AQA - Using the Earth's resources and obtaining potable water – GCSE 2022 Chemistry

1.

June/2022/Pap	er_8462/2F/No.5			
0 5	Ammonia is produced in the	Haber process.		
	The raw materials for the Ha	ber process are ni	trogen and hydrogen.	
0 5 . 1	Draw one line from each raw	v material to the so	ource of that raw material.	[2 marks]
	Raw material		Source of raw material	
			Air	
			Clay	1
	Nitrogen]
			Limestone	
	Hydrogen			1
			Natural gas	
			Sand	
0 5.2	What are the states of nitrog	en and of hydroge	n when used in the Haber p	rocess? [1 mark]
	Tick (\checkmark) one box.			[Timum]
	State of nitrogen	State of hydi	rogen	
	Gas	Gas		
	Gas	Liquid		
	Liquid	Gas		
	Liquid	Liquid		

0 5 . 3	The word equation for the production of ammonia is:	
	nitrogen + hydrogen ⇌ ammonia	
	The atom economy of the reaction is 100%.	
	How does the word equation show that the atom economy is 100%?	[1 mark]
	Tick (✓) one box.	
	The reaction is reversible.	
	There are two reactants.	
	There is one product	

0 5. 4 Figure 5 represents the Haber process.

Figure 5

A mixture of nitrogen, hydrogen and ammonia enters X.

Complete the sentences.

Choose answers from the box.

[2 marks]

evaporated filtered	liquefied	recycled
---------------------	-----------	----------

In **X**, the mixture is cooled.

The ammonia can be removed from X because the ammonia is

The unreacted nitrogen and hydrogen are

______.

Table 8 shows the percentage yield of ammonia at different pressures.

Table 8

Pressure in atmospheres	Percentage (%) yield of ammonia
50	20
100	33
150	44
200	52
250	59
300	64

0 5. 5 Plot the data from Table 8 on Figure 6.

Draw a line of best fit.

[3 marks]

Figure 6

0 5.6 What is the effect of increasing the pressure on the percentage yield of ammonia?

Use **Table 8**.

[1 mark]

2.	June/2022/Pap	er_8462/2F/No.7		
	0 7	This question is about fertilisers	s.	
		Ammonium nitrate is a fertiliser	containing nitrogen.	
	0 7.1	Complete the sentence.		
		Choose the answer from the bo	X.	[1 mark]
		hydrochloric acid	nitric acid	sulfuric acid
		Ammonium nitrate is produced	by reacting ammonia with	
			·	
	0 7.2	Ammonium nitrate fertiliser is so	old in 600 kg bags.	
		A farmer spreads 40 bags of an of 800 000 m^2 .	nmonium nitrate fertiliser on	land with an area
		Calculate the mass of ammoniu	ım nitrate fertiliser spread pe	er m ² of land. [2 marks]
			Mass per m² = _	kg/m²
	0 7.3	A scientist works for a company	which makes ammonium n	itrate fertiliser.
		The scientist investigates the ef	ffect of different fertilisers on	crop growth.
		The scientist concludes that the more than other fertilisers.	ammonium nitrate fertiliser	improves crop growth
		Suggest one reason why this co	onclusion might not be valid	[1 mark]

A different fertiliser containing nitrogen has the formula $\ensuremath{\mathsf{K}}_2\ensuremath{\mathsf{NH}}_4\ensuremath{\mathsf{PO}}_4$

0 7.4	How many atoms of nitrogen are in the formula $K_2NH_4PO_4$? [1 mark]
0 7.5	Nitrogen and potassium in the fertiliser K ₂ NH ₄ PO ₄ are important for good crop growth.
	Which other element in the fertiliser K ₂ NH ₄ PO ₄ is important for good crop growth? [1 mark]
	Tick (✓) one box.
	Hydrogen
	Oxygen
	Phosphorus
0 7.6	Some fertilisers are mixtures of different compounds in fixed proportions.
	What name is given to a mixture of different compounds in fixed proportions? [1 mark]

	3.	June	/2022	/Paper_	8462	/2F	/No.10
--	----	------	-------	---------	------	-----	--------

1 0 This question is about life cycle assessments (LCAs).

1 0. 1 Milk bottles can be made from glass or from a polymer.

Table 10 shows information about milk bottles of equal volume.

Table 10

	Glass	Polymer
Raw materials	Limestone Sand Sodium carbonate	Crude oil
Energy needed to process raw materials in kilojoules	6750	1710
Energy needed to manufacture bottle in kilojoules	750	90
Mass of bottle in grams	200	20
Mean number of times used during lifetime of bottle	25	1
One disposal method at end of useful life	Recycled to make different glass products	Recycled to make different polymer products

Evaluate the use of glass for milk bottles compared with the use of a polymer for milk bottles.

Use features of life cycle assessments (LCAs) in your answer.

Use Table 10 .	[6 marks]

	aqasolvedexampapers.co.uk				
1 0.2	Milk is also sold in cardboard cartons.				
	A carton is made using 40 cm³ of cardboard.				
	The density of the cardboard is 0.40 g/cm ³ .				
	Calculate the mass of the carton.				
	Use the equation:				
	$density = \frac{mass}{volume}$	10			
		[3 marks]			
	Mass =	g			

4.	June/	2022	/Paper_	8462	/2H	/No.3
╼.	Julicy	2022/	i upci_	_0-702/	~ ' '	, 140.5

0 3 This question is about life cycle assessments (LCAs).

0 3. 1 Milk bottles can be made from glass or from a polymer.

Table 2 shows information about milk bottles of equal volume.

Table 2

	Glass	Polymer
Raw materials	Limestone Sand Sodium carbonate	Crude oil
Energy needed to process raw materials in kilojoules	6750	1710
Energy needed to manufacture bottle in kilojoules	750	90
Mass of bottle in grams	200	20
Mean number of times used during lifetime of bottle	25	1
One disposal method at end of useful life	Recycled to make different glass products	Recycled to make different polymer products

Evaluate the use of glass for milk bottles compared with the use of a polymer for milk bottles.

Use features of life cycle assessments (LCAs) in your answer.

Use Table 2. [6 marks]

	aqasolvedexampapers.co.uk	
0 3.2	Milk is also sold in cardboard cartons.	
	A carton is made using 40 cm ³ of cardboard.	
	The density of the cardboard is 0.40 g/cm ³ .	
	Calculate the mass of the carton.	
	Use the equation: mass	
	density = \frac{\text{volume}}{\text{volume}}	arks]
	L	
	Mass =	g

June/2022/Pap	er_8462/2H/No.5
0 5	This question is about water.
0 5.1	Sewage is waste water.
	Sewage contains organic matter.
	Describe how sewage is treated to remove organic matter.
	[4 marks

Sea water and ground water are treated to make them potable.

Table 5 shows information about the composition and treatment of sea water and of ground water.

Table 5

	Sea water	Ground water
Concentration of sodium ions and chloride ions before Process 1	Na ⁺ : 0.5 mol/dm ³ Cl ⁻ : 0.5 mol/dm ³	Na ⁺ : 0.001 mol/dm ³ Cl ⁻ : 0.001 mol/dm ³
Process 1	Reverse osmosis	Filtration
Concentration of sodium ions and chloride ions after Process 1	x	Na ⁺ : 0.001 mol/dm ³ Cl ⁻ : 0.001 mol/dm ³
Process 2	Add ozone	Expose to ultraviolet light

0 5.2	Sea water is desalinated Which pair of concentral Tick (✓) one box.		in Table 5 ? [1 mark]
	Na ⁺ : 0.003 mol/dm ³	Cl ⁻ : 0.003 mol/dm ³	
	Na ⁺ : 0.003 mol/dm ³	Cl ⁻ : 0.5 mol/dm ³ Cl ⁻ : 0.003 mol/dm ³	
	Na ⁺ : 0.5 mol/dm ³	Cl ⁻ : 0.5 mol/dm ³	
0 5.3	Explain why the concentrations of sodium ions and of chloride ions in the ground water in Table 5 are unchanged by Process 1 . [2 mark		

0 5.4	Explain why the ground water in Table 5 requires Process 2 before the water is safe to drink.
	[2 marks]
0 5.5	After treatment the ground water in Table 5 is sold by a company as pure water.
	The ground water in Table 5 is not chemically pure because the water contains sodium ions and chloride ions.
	Suggest what the company means by 'pure'.
	[1 mark]
0 5.6	Chlorine is also used to treat some ground water.
	Describe the test for chlorine gas.
	Give the result of the test.
	[2 marks]
	Test
	Result

6.	June/2022/Paper_	8462/2H/No.7
		/

0 7

Ammonia is produced in the Haber process.

The raw materials for the Haber process are nitrogen and hydrogen.

The equation for the reaction is:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

0 7 . 1

Give the sources of the nitrogen and of the hydrogen used in the Haber process.

[2 marks]

Nitrogen ____

Hydrogen____

0 7 . 2

How does the equation for the reaction show that the atom economy of the forward reaction is 100%?

[1 mark]

0 7. 3 Figure 4 represents the Haber process.

Figure 4

Explain how the ammonia produced is separated from the unreacted nitrogen and hydrogen in \mathbf{X} .

hydrogen in X. [2 marks]

The Haber process uses a temperature of 450 $^{\circ}\text{C}$ and a pressure of 200 atmospheres.

Table 6 shows the percentage yield of ammonia produced at 450 $^{\circ}\text{C}$ using different pressures.

Table 6

Pressure in atmospheres	Percentage (%) yield of ammonia
60	9
120	18
180	25
240	31
300	36
360	40
420	43

0 7 . 4 Complete Figure 5.

The first two points have been plotted.

You should:

- use a suitable scale for the x-axis
- plot the remaining data from Table 6
- draw a line of best fit.

[4 marks]

Figure 5

Pressure in atmospheres

0 7. 5 Determine the percentage yield of ammonia at 450 °C and 500 atmospheres.

Show your working on Figure 5.

[2 marks]

Percentage yield = %