
<u>Transition metal – A2 2022 Chemistry P1&P3</u>

1.	June/2022/Paper_7405/1/No.7		
	0 7	Copper(II) complexes are coloured. The colour is caused by the d electrons of copper moving from their ground an excited state.	d state to
	0 7.1	Explain why aqueous solutions containing [CuCl $_4$] $^{2-}$ ions are yellow.	[2 marks
	0 7 . 2	When a d electron moves from the ground state to the excited state in a copper complex, the energy change is $3.98 \times 10^{-19} \text{ J}$	
		The Planck constant, $h = 6.63 \times 10^{-34} \text{ J s}$	
		Calculate the frequency, in s ⁻¹ , of the light absorbed.	[2 marks]
		Frequency	s ⁻¹
	0 7.3	State three ways in which a transition metal complex can be changed to a colour.	Iter its
			[3 marks]
		1	
		2	
		3	

aqasolvedexampapers.co.uk

Consider the following reaction scheme in which ${\bf P},\,{\bf Q}$ and ${\bf R}$ are different complex ions of copper.

0 7.4 Name the shape of the [CuCl₄]²⁻ ion.

[1 mark]

 $\boxed{0\ 7}$. $\boxed{5}$ Give an ionic equation for the conversion of $[CuCl_4]^{2-}$ to complex ion \blacksquare .

[1 mark]

0 7.6 State the colour of the solution containing the complex ion Q.

Give an ionic equation for the conversion of $[CuCl_4]^{2-}$ to ${\bf Q}$.

[2 marks]

Colour

Equation

0 7. 7 Identify complex ion R.

[1 mark]

2. June/2022/Paper_7405/3/No.19

Which pair of reagents reacts to form a tetrahedral complex?

[1 mark]

- A CoCl₂(aq) and concentrated NH₃(aq)
- B CuSO₄(aq) and concentrated NH₃(aq)
- C CuSO₄(aq) and sodium ethanedioate(aq)
- D FeCl₃(aq) and concentrated HCl(aq)