AQA - Quantitative Chemistry - GCSE 2022 CS Chemistry

<u> </u>	AQA - Qualificative Chemistry - OCSE 2022 CS Chemistry					
1.	June/2022/Paper_8464/C/1H/No.6					
	0 6	This question is about hydrogen chloride and hydrochloric acid.				
	0 6 . 1	Complete the dot and cross diagram to represent the bonding in hydrogen chloride on Figure 7 .				
		Use dots (o) and crosses (x) to represent electrons.				
		You should show only the electrons in the outer shells.	markel			
		Figure 7	marks]			
		H Cl				
	0 6 . 2	Hydrogen chloride dissolves in water to produce hydrochloric acid.				
		Hydrochloric acid is a strong acid.				
		What is meant by the term strong acid?	1 mark]			
	0 6.3	Describe how magnesium can be used to distinguish between a strong acid an weak acid of the same concentration.	nd a marks]			

aqasolvedexampapers.co.uk

The concentration of hydrochloric acid is increased by a factor of 100

•	·	
What is the change in pH?		[2 marks]

0 6 . 5 Ethene and hydrogen chloride react to produce chloroethane.

The displayed formulae equation for the reaction is:

The reaction is exothermic.

In the reaction the energy released forming new bonds is 56 kJ/mol greater than the energy needed to break existing bonds.

Table 1 shows some bond energies.

Table 1

Bond	H-C	C=C	H-CI	C-C	C-CI
Bond energy in kJ/mol	413	x	431	346	339

Calcu	ulate the bond energy X .		[4 marks]
		X =	kJ/mol