		aqasolvedexampapers.co.uk	
<u>0></u>	<u>idation, redu</u>	ction and redox equations – AS 2022 Chemistry P1	
1.	June/2022/Pap	per_7404/1/No.6	
	0 6	lodide ions can be oxidised to iodine using oxidising agents such as iodate(V) ions (IO ₃ ⁻) and concentrated sulfuric acid.	
	06.1	State, in terms of electrons, the meaning of the term oxidising agent.	[1 mark]
		In acidic solution, IO ₃ ⁻ ions oxidise iodide ions to iodine.	
		$ O_3^- + 5 ^- + 6H^+ \rightarrow 3 _2 + 3H_2O$	
	06.2	Give a half-equation for the oxidation of iodide ions to iodine.	
		Deduce the half-equation to show the reduction process in this reaction.	[2 marks]
		Oxidation half-equation	
		Reduction half-equation	
	06.3	When iodide ions are oxidised using concentrated sulfuric acid, sulfur dioxi yellow solid and a foul-smelling gas are all formed.	de, a
		Give an equation to show the reaction between iodide ions and concentrated sulfuric acid to form the yellow solid.	
		Identify the foul-smelling gas.	[2 marks]
		Equation	
		Identity of foul-smelling gas	

2. June/2022/Paper_7404/1/No.8

0 8

A student does two test-tube reactions on four colourless solutions (A, B, C and D).

Table 4 shows the student's observations.

Table 4

Solution	Test 1	Test 2				
	Add Na ₂ CO ₃ (s)	Add acidified AgNO ₃ (aq)				
Α	Effervescence	No visible change				
в	Effervescence	White precipitate				
С	No visible change	No visible change				
D	No visible change	Very pale yellow precipitate				

0 8 . 1

Identify the gas formed in Test 1.

Describe a further test to confirm the identity of this gas.

[2 marks]

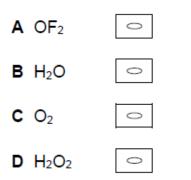
Identity of gas	

Test

08.2

Explain how the observations from **Test 1** and **Test 2** can be used to show that solution **B** contains hydrochloric acid.

[2 marks]


Describe a	series	of tests	that the	student	can us	e to	show	that	solution	С со	ntains
ammonium	i sulfate	Э.									

[4 marks]

0 8.4	The student does an additional experiment to show that solution D contains								
	a mixture of halide ions. One of the halide ions is chloride. Method:								
	 Step 1 Add an excess of AgNO₃(aq) to 10.0 cm³ of solution D. Step 2 Filter, wash, dry and weigh the precipitate. Step 3 Add an excess of dilute ammonia to the dry precipitate. Step 4 Filter, wash, dry and weigh the solid that remains. 								
	Explain how the masses recorded during this experiment can be used to show that solution D contains a mixture of halide ions.								
	[2 mar	ks]							

3. June/2022/Paper_7404/1/No.19 In which of these substances is oxygen in the highest oxidation state?

[1 mark]

