Kinetics - A2 2022 Chemistry P2&P3

June/2022/Pap	er_7405/2/No.1 An acidified solution of butanone reacts with iodine as shown.	
	$CH_3CH_2COCH_3 + I_2 \ \to CH_3CH_2COCH_2I + HI$	
0 1.1	Draw the displayed formula for CH ₃ CH ₂ COCH ₂ I	
	Give the name of CH ₃ CH ₂ COCH ₂ I	[2 marks]
	Displayed formula	
	0 1	$CH_3CH_2COCH_3 + I_2 \ \rightarrow CH_3CH_2COCH_2I + HI$ $\boxed{ 0 \ 1 }. \boxed{ 1 } \ Draw \ the \ displayed \ formula \ for \ CH_3CH_2COCH_2I$ $Give \ the \ name \ of \ CH_3CH_2COCH_2I$

Name _____

0 1. 2 The rate equation for the reaction is

$$rate = k[CH_3CH_2COCH_3][H^{+}]$$

Table 1 shows the initial concentrations used in an experiment.

Table 1

	CH ₃ CH ₂ COCH ₃	l ₂	H⁺
Initial concentration / mol dm ⁻³	4.35	0.00500	0.825

The initial rate of reaction in this experiment is 1.45×10^{-4} mol dm⁻³ s⁻¹

Calculate the value of the rate constant, k, for the reaction and give its units.

[3 marks]

k			
Units			

0 1. 3 Calculate the initial rate of reaction when all of the initial concentrations are halved.
[1 mark]

Initial rate of reaction _____ mol dm⁻³ s⁻¹

0 1 . 4

An experiment was done to measure the time, t, taken for a solution of iodine to react completely when added to an excess of an acidified solution of butanone.

Suggest an observation used to judge when all the iodine had reacted.

[1 mark]

The experiment was repeated at different temperatures.

Figure 1 shows how $\frac{1}{t}$ varied with temperature for these experiments.

Figure 1

aqasolvedexampapers.co.uk

[3 marks]	Describe and explain the shape of the graph in Figure 1.	0 1.5
[1 mark]	Deduce the time taken for the reaction at 35 $^{\circ}\text{C}$	0 1 . 6
s		

0 1.7

For a different reaction, **Table 2** shows the value of the rate constant at different temperatures.

Table 2

Experiment	Temperature / K	Rate constant / s ⁻¹
1	T ₁ = 303	$k_1 = 1.55 \times 10^{-5}$
2	T ₂ = 333	$k_2 = 1.70 \times 10^{-4}$

This equation can be used to calculate the activation energy, Ea

$$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Calculate the value, in kJ mol⁻¹, of the activation energy, E_a

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[5 marks

	aqasolvedexampapers.co.uk
0 1 . 8	Name and outline the mechanism for the reaction of butanone with KCN followed by dilute acid.
	[5 marks]
	Name of mechanism
	Outline of mechanism

Which of these oxidation states is correct?

[1 mark]

- A Chlorine in Cl₂ is -1
- B Chromium in K₂Cr₂O₇ is +7
- C Fluorine in F₂O is -1
- D Hydrogen in NaH is +1