<u>Equilibrium constant Kp for homogeneous systems – A2 2022 Chemistry P1&P3</u>

1.

June/2022/Pap	per_7405/3/No.5
0 5	This question is about catalysis.
0 5.1	Zeolites are used as heterogeneous catalysts in the catalytic cracking of alkanes.
	Tetradecane $(C_{14}H_{30})$ can be cracked to form octane and a cycloalkane.
	Give an equation for this reaction.
	State the meaning of the term heterogeneous. [2 marks]
	Equation
	Heterogeneous
0 5.2	A student determines the concentration of ethanedioate ions in an acidified solution by titration with potassium manganate(VII) solution.
	$2MnO_4{}^- + 5C_2O_4{}^{2-} + 16H^{\scriptscriptstyle +} \rightarrow 2Mn^{2\scriptscriptstyle +} + 10CO_2 + 8H_2O$
	The mixture is warmed before the addition of potassium manganate(VII) solution because the reaction is slow at first. When more potassium manganate(VII) solution is added, the mixture goes colourless quickly due to the presence of an autocatalyst.
	Explain the meaning of the term autocatalyst.
	Explain, using equations where appropriate, why the reaction is slow at first and then goes quickly.
	[6 marks]

		aqasolvedexampapers.co.uk			
	-				
0 5. The reaction between peroxodisulfate ions and iodide ions in aqueous solut catalysed by Co ²⁺ ions.					
	$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$				
	Table 6 gives r	elevant standard electrode potentials.			
		Table 6			
		Electrode half-equation	E°/V		
		Electrode half-equation $S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq)$	E ° / V +2.01		
		$S_2O_8^{2-}(aq) + 2e^- \rightarrow 2SO_4^{2-}(aq)$	+2.01		
	Use the electro	$S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq)$ $Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+2.01 +1.82 +0.54		
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54		
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54		
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54		
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54		
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54	n. [3 marks]	
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54		
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54		
	Use the electro	$\begin{array}{c} S_2O_8{}^{2-}(aq) + 2e^- \rightarrow 2SO_4{}^{2-}(aq) \\ \\ Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq) \\ \\ I_2(aq) + 2e^- \rightarrow 2I^-(aq) \end{array}$	+2.01 +1.82 +0.54		