Energetics - A2 2022 Chemistry P2

1.	June/2022/Pap	per_7405/2/No.5	
	0 5	This question is about the preparation of hexan-2-ol. Hexan-2-ol does not mix with water and has a boiling point of 140 °C	
		Hexan-2-ol can be prepared from hex-1-ene using this method.	
		a Measure out 11.0 cm³ of hex-1-ene into a boiling tube in an ice bath.	
		b Carefully add 5 cm ³ of concentrated phosphoric acid to the hex-1-ene.	
		c After 5 minutes add 10 cm³ of distilled water to the mixture and transfer boiling tube contents to a separating funnel.	the
		d Shake the mixture and allow it to settle.	
		e Discard the lower (aqueous) layer.	
		${f f}$ Add a fresh 10 cm 3 sample of distilled water and repeat steps ${f d}$ and ${f e}$.	
		g Transfer the remaining liquid to a beaker.	
		h Add 2 g of anhydrous magnesium sulfate and allow to stand for 5 minute	es.
		i Filter the mixture under reduced pressure.	
		j Distil the filtrate and collect the distillate that boils in the range 130–160	°C
	0 5.1	It is important to wear eye protection and a lab coat when completing this ex	xperiment.
		Suggest, with a reason, one other appropriate safety precaution for this exp	eriment. [2 marks]
		Precaution	
		Reason	
	0 5 . 2	Give a reason for adding the distilled water in steps ${\bf c}$ and ${\bf f}$.	[1 mark)
	0 5.3	Give a reason for adding anhydrous magnesium sulfate in step h .	[1 mark

0 5. 4 Complete and label the diagram of the apparatus used to filter the mixture under reduced pressure in step i.

[2 marks]

0 5. Identify the most likely organic impurity, other than hex-1-ene, in the distillate collected in step j.

Suggest one reason why it could be difficult to remove this impurity.

[2 marks]

Impurity _____

Reason

	agasalyodovampanors so uk
	aqasolvedexampapers.co.uk
0 5 . 6	Calculate the mass, in g, of hexan-2-ol formed from 11.0 cm³ of hex-1-ene if the yield is 31.0%
	Give your answer to 1 decimal place.
	Density of hex-1-ene = 0.678 g cm ⁻³ [4 marks

Mass _____ g

2.	lune	/2022	/Paper	7405	/3	/No.1
∡.	Julie	12022	/ raper	7400	<i>,</i> J	/ INO. 1

0 1

A value for enthalpy of solution can be determined in two ways:

- from a cycle, using lattice enthalpy and enthalpies of hydration
- from the results of a calorimetry experiment.

	_		l -
	1		4
U		_	
_			

Define the term enthalpy of lattice dissociation.

[2 marks]

0 1 . 2

The enthalpy of solution for ammonium nitrate is the enthalpy change for the reaction shown.

$$NH_4NO_3(s) + aq \rightarrow NH_4^+(aq) + NO_3^-(aq)$$
 $\Delta H = +26 \text{ kJ mol}^{-1}$

Table 1

	NH ₄ ⁺ (g)	NO ₃ ⁻ (g)
Enthalpy of hydration Δ _{hyd} H/kJ mol ⁻¹	-307	-314

Draw a suitably labelled cycle and use it, with data from **Table 1**, to calculate the enthalpy of lattice dissociation for ammonium nitrate.

[3 marks]

Enthalpy of lattice dissociation _____

kJ mol⁻¹

0 1 . 3

A student does an experiment to determine a value for the enthalpy of solution for ammonium nitrate.

The student uses this method.

- Measure 25.0 cm³ of distilled water in a measuring cylinder.
- · Pour the water into a beaker.
- Record the temperature of the water in the beaker.
- Add 4.00 g of solid NH₄NO₃ to the water in the beaker.
- Stir the solution and record the lowest temperature reached.

Table 2 shows the student's results.

Table 2

Initial temperature / °C	20.2
Lowest temperature / °C	12.2

Calculate the enthalpy of solution, in kJ mol⁻¹, for ammonium nitrate in this experiment.

Assume that the specific heat capacity of the solution, $c = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$

Assume that the density of the solution = 1.00 g cm⁻³

[3 marks]

0 1.4	The uncertainty in each of the temperature readings from the thermometer used in this experiment is $\pm 0.1^{\circ}\text{C}$
	Calculate the percentage uncertainty in the temperature change in this experiment. [1 mark]
	Percentage uncertainty
0 1 . 5	Suggest a change to the student's method, using the same apparatus, that would reduce the percentage uncertainty in the temperature change.
	Give a reason for your answer. [2 marks]
	Change
	Reason
0 1.6	Another student obtained a value of +15 kJ mol ⁻¹ using the same method.
	Suggest the main reason for the difference between this experimental value for the enthalpy of solution and the correct value of +26 kJ mol ⁻¹ [1 mark]

0 1 . 7

Table 3 shows some entropy data at 298 K

Table 3

	Entropy S/JK ⁻¹ mol ⁻¹
NH ₄ NO ₃ (s)	151
NH ₄ +(aq)	113
NO ₃ -(aq)	146

Calculate a value for the Gibbs free-energy change (ΔG), at 298 K, for the reaction when ammonium nitrate dissolves in water.

$$NH_4NO_3(s) + aq \rightarrow NH_4^+(aq) + NO_3^-(aq)$$
 $\Delta H = +26 \text{ kJ mol}^{-1}$

Use data from **Table 3** and the value of ΔH from the equation. Assume for the solvent, water, that the entropy change, $\Delta S = 0$

Explain what the calculated value of $\Delta \textit{G}$ indicates about the feasibility of this reaction at 298 K

[4 marks]

	Δ G	kJ mol ⁻¹
Explanation		

0 1 . 8 Ammonium nitrate decomposes as shown.

$$NH_4NO_3(s) \to N_2(g) + \frac{1}{2}\,O_2(g) + 2\,H_2O(g) \hspace{0.5cm} \Delta H = +123\;kJ\,mol^{-1}$$

The entropy change (ΔS) for this reaction is +144 J $\rm K^{-1}\,mol^{-1}$

Calculate the temperature at which this reaction becomes feasible.

[2 marks]

emperature	K

- 3. June/2022/Paper_7405/3/No.4
 - 0 4

Hydrogen peroxide solution decomposes to form water and oxygen.

$$2 H_2 O_2(aq) \rightarrow 2 H_2 O(I) + O_2(g)$$

The reaction is catalysed by manganese(IV) oxide.

A student determines the order of this reaction with respect to hydrogen peroxide. The student uses a continuous monitoring method in the experiment.

The student places hydrogen peroxide solution in a conical flask with the catalyst and uses a gas syringe to collect the oxygen formed. The student records the volume of oxygen every 10 seconds for 100 seconds.

0 4 . 1	Explain why the reaction is fastest at the start.	[2 marks]

0 4 . 2

The graph in **Figure 1** shows how the concentration of hydrogen peroxide changes with time in this experiment.

Tangents to the curve in Figure 1 can be used to determine rates of reaction.

Draw a tangent to the curve when the concentration of hydrogen peroxide solution is $0.05 \ \text{mol} \ \text{dm}^{-3}$

Use your tangent to calculate the gradient of the curve at this point.

[2 marks]

Gradient mol dm⁻³ s⁻¹

0 4 . 3

The concentration of hydrogen peroxide solution at time *t* during the experiment can be calculated using this expression.

$$\begin{bmatrix} \mathbf{H}_2 \mathbf{O}_2 \end{bmatrix}_t = \begin{bmatrix} \mathbf{H}_2 \mathbf{O}_2 \end{bmatrix}_{\text{initial}} \left(\frac{V_{\text{max}} - V_t}{V_{\text{max}}} \right)$$

 $[H_2O_2]_t$ = concentration of hydrogen peroxide solution at time t / mol dm⁻³

 $\left[\mathrm{H_2O_2}\right]_{\mathrm{initial}}$ = concentration of hydrogen peroxide solution at the start / mol dm $^{-3}$

 $V_{\rm max}$ = total volume of oxygen gas collected during the whole experiment / cm³

 V_t = volume of oxygen gas collected at time t / cm³

In this experiment, $V_{\rm max}$ = 100 cm³

Use **Figure 1** and the expression to calculate $[H_2O_2]_t$ when 20 cm³ of oxygen has been collected.

[2 marks]

H_2O_2		2
11202 ₁	mol dm	1-3

Table 5 shows data from a similar experiment.

Table 5

[H ₂ O ₂] / mol dm ⁻³	0.02	0.03	0.05	0.07	0.09
Rate / mol dm ⁻³ s ⁻¹	0.00049	0.00073	0.00124	0.00168	0.00219

0 4. 4 Plot the data from **Table 5** on the grid in **Figure 2**.

Draw a line of best fit.

[2 marks]

0 4 . 5 Use Figure 2 to determine the order of reaction with respect to H₂O₂

State how the graph shows this order.

-		_	-		ı
_	m				ı
_		ч		1	ı

Order

How the graph shows this order

June/2022/Paper_7405/3/	/No.17
---	--------

Which statement is correct about the Group 1 elements?

[1 mark]

Α	The Cs ⁺ ion has a more negative enthalpy of hydration than the Rb ⁺ ion.	0
В	The enthalpy of atomisation for potassium is greater than the enthalpy of atomisation for sodium.	0
С	The melting point of potassium is higher than the melting point of sodium.	0
D	The second ionisation energy of rubidium is lower than the second ionisation energy of lithium.	0