AQA - Chemical bonds, ionic, covalent and metallic - GCSE 2022 Chemistry

1. June/2022/Paper_8462/1F/No.6

0 6 This question is about carbon and compounds of carbon.

Figure 9 shows diagrams that represent different structures.

Figure 9

Use Figure 9 to answer questions 06.1 and 06.2.

0 6 . 1 Which diagram represents graphite?

[1 mark]

Tick (\checkmark) one box.

0 6. 2 Which diagram represents poly(ethene)?

[1 mark]

Tick (✓) one box.

Figure 10 represents the structure of diamond.

Figure 10

0 6.3	How many covalent bonds does each carbon ato	om form in diamond?	[1 mark]
0 6.4	Which is a property of diamond? Tick (✓) one box.		[1 mark]
	Conducts electricity		
	Low melting point		
	Very hard		

0 6.5 Figure 11 shows a model of a molecule.

Figure 11

Complete the molecular formula of the molecule.

[1 mark]

Molecular formula = C___ H___

Carbonic acid is a compound of carbon.

The formula of carbonic acid is H₂CO₃

0 6. Which ion is produced by carbonic acid in aqueous solution?

[1 mark]

Tick (\checkmark) one box.

H⁺

OH-

O²⁻

 $\begin{bmatrix} \mathbf{0} & \mathbf{6} \end{bmatrix}$. Calculate the relative formula mass (M_r) of carbonic acid (H_2CO_3) .

Relative atomic masses (A_r) : H = 1 C = 12 O = 16

[2 marks]

Relative formula mass (M_r) =_____

2. June/2022/Paper_8462/1H/No.3

0 3 This question is about different forms of carbon.

Figure 5 represents the structure of diamond.

Figure 5

0 3.1	Describe the structure and bonding of diamond.	[3 marks]
0 3.2	Explain why diamond has a very high melting point.	[3 marks]

Figure 6 represents the molecule $\ensuremath{\text{C}}_{70}$

Figure 6

0 3.3	What is the name of this type of molecule?	1 mark]
	Tick (✓) one box.	i markj
	Fullerene	
	Graphene	
	Nanotube	
	Polymer	
0 3.4	Molecules such as C_{70} can be used in medicine to move drugs around the body Suggest one reason why the C_{70} molecule is suitable for this use.	y. [1 mark]

aqasolvedexampapers.co.uk

0 3.5	Calculate the number of C_{70} molecules that can be made from one mole of carbon atoms.	
	The Avogadro constant = 6.02 × 10 ²³ per mole	[3 marks]
	Number of molecules =	