Atomic structure - A2 2022 Chemistry P1&P3

1.

June/2022/Pap	per_7405/1/No	0.2		
0 2	Rhenium ha	as an atomic number of 75		
0 2 . 1	Define the t	erm relative atomic mass.		[2 marks
0 2.2	The relative	atomic mass of a sample of rhen	ium is 186.3	
	Table 2 sho	ows information about the two isot	opes of rhenium in this samp	ole.
	Table 2			
		Relative isotopic mass	Relative abundance	
		185	10	
		To be calculated	17	
	Calculate the Show your	ne relative isotopic mass of the oth	er rhenium isotope.	[2 marks
			topic mass	
0 2 . 3	State why the isotopes of rhenium have the same chemical properties.			

aqasolvedexampapers.co.uk

A sample of rhenium is ionised by electron impact in a time of flight (TOF) mass spectrometer.

0 2 . 4

A $^{185}Re^+$ ion with a kinetic energy of 1.153 \times $10^{-13}\,J$ travels through a 1.450 m flight tube.

The kinetic energy of the ion is given by the equation $KE = \frac{1}{2} mv^2$

where m = mass / kg $v = \text{speed} / \text{m s}^{-1}$ KE = kinetic energy / J

Calculate the time, in seconds, for the ion to reach the detector.

The Avogadro constant, $L = 6.022 \times 10^{23} \,\mathrm{mol^{-1}}$

[5 marks]

Time ____s

aqasolvedexampapers.co.uk

0 2 . 5	State how the relative abundance of $^{185}\mbox{Re}^{\scriptscriptstyle +}$ is determined in a TOF mass spectrometer.				
		[2 marks]			

2. June/2022/Paper_7405/3/No.2

Tschermigite is a hydrated, water-soluble mineral, with relative formula mass of 453.2

The formula of tschermigite can be represented as $M.xH_2O$, where M represents all the ions present.

Table 4 shows its composition by mass.

Table 4

Element	% by mass
N	3.09
Н	6.18
Al	5.96
S	14.16
0	70.61

In an analysis, it is found that the mineral contains the ions NH₄+, Al³⁺ and SO₄²⁻

Calculate the empirical formula of tschermigite and the value of x in M.xH2O

Describe the tests, with their results, including ionic equations, that would confirm the identities of the ions present.

[6 marks]

aqasolvedexampapers.co.uk

3. June/2022/Paper_7405/3/No.6

Which atom in the ground state contains at least one unpaired p electron?

[1 mark]

A Na

0

B Ne

0

c o

0

D Sc

0

4. June/2022/Paper_7405/3/No.8

Which substance has no delocalised electrons?

[1 mark]

A graphite

0

B methylbenzene

0

C poly(propene)

0

D sodium

0

5. June/2022/Paper_7405/3/No.16

Which ionisation needs less energy than this process?

$$Mg(g) \rightarrow Mg^{\scriptscriptstyle +}(g) + e^{\scriptscriptstyle -}$$

[1 mark]

 $A \ \text{Al}(g) \to \text{Al}^{\scriptscriptstyle +}(g) + e^{\scriptscriptstyle -}$

0

 $\textbf{B} \ \text{Ar}(g) \rightarrow \text{Ar}^{\scriptscriptstyle +}(g) + e^{\scriptscriptstyle -}$

0

 $\textbf{C} \ \mathsf{Be}(g) \to \mathsf{Be}^{\scriptscriptstyle +}(g) + e^{\scriptscriptstyle -}$

0

 $\textbf{D} \ \mathsf{Mg^+}(g) \to \mathsf{Mg^{2+}}(g) + e^-$

0