Amount of substance - AS 2022 Chemistry P2

- 1. June/2022/Paper_7404/2/No.4
 - 0 4 This question is about gas volumes.
 - 0 4. 1 TNT (C₇H₅N₃O₆) is an explosive because it can decompose very quickly and exothermically to form a large volume of gas. An equation for this decomposition is

$$2\,C_7 H_5 N_3 O_6(s) \rightarrow 3\,N_2(g) + 5\,H_2(g) + 12\,CO(g) + 2\,C(s)$$

Calculate the volume of gas, in m³, measured at 1250 °C and 101000 Pa, produced by the decomposition of 1.00 kg of TNT ($M_{\rm f}$ = 227.0).

The gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$

[5 marks]

Volume of gas m³

	aqasolvedexampapers.co.uk					
0 4.2	Alkenes have the general formula C_nH_{2n}					
	When alkenes undergo complete combustion, 1.0 mol of C_nH_{2n} reacts with $\frac{3n}{2}$ mol of oxygen.					
	Calculate the volume of oxygen needed for the complete combustion of 200 cm ³ of but-1-ene.					
	The volumes of all gases are measured at the same temperature and pressure.					
		_				
	Volume of oxygen	cm ³				
0 4.3	Alkanes have the general formula C_nH_{2n+2}					
	Alkanes undergo complete combustion in a plentiful supply of oxygen.					
	$C_nH_{2n+2} + xO_2 \rightarrow nCO_2 + (n+1)H_2O$					
	Determine x in terms of n	[1 mark				

2.	June/	/2022/	Paper_	7404/	/2/No.6
----	-------	--------	--------	-------	---------

0 6

Trichlorofluoromethane (CCl $_3$ F) was developed as a refrigerant. The production and use of CCl $_3$ F is now restricted.

0 6 . 1

The equation for a process used to manufacture CCl₃F is

$$SbF_3Br_2 + CCl_4 \rightarrow CCl_3F + SbF_2Br_2Cl$$

Calculate the percentage atom economy for the production of CCl₃F in this reaction. Give your answer to 3 significant figures.

[2 marks]

Percentage atom economy

An alternative synthesis of CCl_3F is the free-radical substitution reaction between fluoromethane (CH_3F) and chlorine.

0 6 . 2

An intermediate in this alternative synthesis is dichlorofluoromethane (CHCl₂F)

Give equations to represent the two propagation steps in the conversion of $CHCl_2F$ into CCl_3F

[2 marks]

Propagation step 1

Propagation step 2

aqasolvedexampapers.co.uk

 $\fbox{0}$ $\fbox{6}$. $\fbox{3}$ Analysis of the products of this reaction shows the formation of a compound with the empirical formula CCl $_2$ F

Give an equation to represent a termination step forming this compound. Show the structural formula of the product in the equation.

[1 mark]