Waves - A2 Physics P1 2022

1. June /2022/Paper_ 7408/1/No.6

0 6

Two transparent prisms **A** and **B** of different refractive indices are placed in contact to produce a rectangular block.

Figure 12 shows the path of a ray, incident normally on **A**, refracting as it crosses the boundary between the prisms.

Figure 12

0 6 . 1	Explain how the path of the ray shows that the refractive index of A is greater than the refractive index of B .
	[1 mark]

agaso	IVAN	evam	nane	rc c	a uk
aqaso	$\mathbf{v} \subset \mathbf{c}$	CAGIII	pape		J.un

0 6 . 2 Show that the angle of refraction of the ray in **B** is about 60°.

[2 marks]

0 6. 3 Draw, on **Figure 12**, the path of the ray immediately after it reaches **P**. Justify your answer with calculations.

[3 marks]

2.	June /2022/Paper_ 7408/1/No.18 A longitudinal wave of frequency $660~{\rm Hz}$ travels through a medium. The wave speed is $330~{\rm m~s}^{-1}$.						
	Which statement describ	es the motion of a particle in the wav	e?	[1 mark]			
	A It is travelling at a spe	eed of 330 m s^{-1} .	0				
	B It moves in phase with	h a particle in the wave 25 cm away.	0				
	C It oscillates with a tim	e period of 1.5 ms.	0				
	D It changes direction 6	60 times every second.	0				
3.	The tension in the string	t harmonic of a standing wave on a st					
		equency 2f after this change?	mass of the string.				
	vvilien namena nas a n	equency 1/ and this change:		[1 mark]			
	A first	0					
	B second	0					
	C third	0					
	D fourth	0					

3.

4. June /2022/Paper_ 7408/1/No.20

Light of wavelength $5.2 \times 10^{-7} \, \mathrm{m}$ is used in a Young's double-slit experiment.

The distance from the slits to the screen is $1.5\ m.$

The width of ten fringes is 3.5 cm.

What is the separation of the two slits?

[1 mark]

- **A** $2.2 \times 10^{-5} \text{ m}$
- 0
- **B** $9.9 \times 10^{-5} \, m$
- 0
- **C** $1.1 \times 10^{-4} \, m$
- 0
- $\textbf{D}~2.2\times10^{-4}~m$
- 0

5. June /2022/Paper_ 7408/1/No.21

Monochromatic light of wavelength $5.8\times10^{-7}~\mathrm{m}$ is incident normally on a plane transmission diffraction grating that has a slit separation of $2.5\times10^{-6}~\mathrm{m}$.

How many maxima are produced by the grating?

[1 mark]

A 4

0

B 5

0

C 8

0

D 9

0