Particles and radiation – 2022 AS Physics

- 1. June /2022/Paper_ 7407/1/No.1
 - 0 1 A

A sigma-plus (Σ^+) particle and an unidentified particle **Y** are produced by the strong interaction between a positive pion (π^+) and a proton (p).

This interaction is represented by the equation:

$$\pi^+ + p \rightarrow \Sigma^+ + Y$$

0 1 . 1

Complete **Table 1** to show the baryon number B, charge Q and strangeness S for the particles in this interaction.

[2 marks]

Table 1

	π+	p	Σ^+	Y
В				0
Q	+1	+1	+1	
S				+1

0 1 . 2 Which particle in Table 1 has the quark struct	ire uus'
---	----------

Tick (✓) one box.

[1 mark]

$$\pi^{+}$$

$$\Sigma^{+}$$

0 1 . 3	Deduce which particle, $\pi^{\!\scriptscriptstyle +}$ or $\mathbf{Y},$ has the greater charge-to-mass ratio. Justify your conclusion.	IO mankal
		[3 marks]

2.	. June /2022/Paper_ 7407/1/No.2				
	0 2	A sample of bromine gas contains a mixture of two isotopes. An experiment is done to find the percentage of each isotope in this sample.			
	0 2.1	In the experiment, the gas is ionised by a beam of electrons.			
		Explain how the beam of electrons causes a particle of the gas to have a charge of $\pm 1e$.			
		[2 marks			

The gas consists of bromine molecules. Each molecule has two bromine atoms. The experiment finds that the bromine molecules contain 158, 160 or 162 nucleons.

Figure 1 shows the percentage of these different molecules in the sample.

0 2 . 2	2 Bromine has a proton number of 35 The two isotopes in the sample have different nucleon numbers.		
	Calculate the number of neutrons for the isotope that has the greater nucleon [2	number. 2 marks]	
	number of neutrons =		
0 2.3	Deduce the percentage of each isotope in the gas. Justify your conclusion.	2 marks]	

0 4	An isolated metal plate is given a negative charge. Electromagnetic radiation is incident on the plate. The plate loses its charge due to the photoelectric effect.
0 4.1	Discuss how the rate of loss of charge from the plate depends on the frequency and intensity of the incident radiation.
	In your answer you should explain why:
	 the plate loses its charge the photoelectric effect occurs only for frequencies greater than a particular value the rate of loss of charge increases with intensity for radiation above that particular value of frequency.
	[6 marks]

	aqasolvedexampapers.co.uk
0 4.2	Charged particles are emitted from the metal plate with a maximum kinetic energy of $1.1~eV$ when radiation of frequency $1.2\times10^{15}~Hz$ is incident on the plate.
	Calculate, in eV, the work function of the metal.
	[3 marks]

0 5

Figure 4 shows apparatus used to demonstrate the wave-particle duality of electrons.

Figure 4

The heated filament emits slow-moving electrons.

In region **P**, the electrons are accelerated to a high speed.

At **Q**, the fast-moving electrons are incident on the graphite target.

R is a point on one of the bright rings that are formed where the electrons strike the fluorescent screen.

0 5 The electrons demonstrate wave-like and particle-like behaviour as they travel from the filament to the screen.

State and explain at which of ${\bf P},\,{\bf Q}$ or ${\bf R}$ the electrons are demonstrating wave-like behaviour.

[2 marks]

0 5 . 2	The apparatus is adjusted so that the electrons are incident on the graphite target with a greater speed.		
	Explain why the bright rings formed on the screen now have a smaller diameter. [3 marks]		

Which row has the largest value for

 $\frac{\text{specific charge of the particle in column } X}{\text{specific charge of the particle in column } Y}?$

[1 mark]

	x	Y	
Α	electron	alpha particle	0
В	alpha particle	electron	0
С	electron	proton	0
D	proton	alpha particle	0

Which diagram represents the process of electron capture?

[1 mark]

Α

В

С

D

A o

В

C o

D 0

Which row is correct?

[1 mark]

	Name of particle	Classification	Quark structure	
Α	antineutron	meson	$\overline{u}\overline{u}\overline{d}$	0
В	positive kaon	baryon	$\overline{u}s$	0
С	antiproton	baryon	$\overline{u}\overline{u}\overline{d}$	0
D	positive pion	meson	$\overline{u} d$	0

8. June /2022/Paper_ 7407/2/No.10

An alpha particle and a nucleus of boron $^{10}_{\ 5}{\rm B}$ interact to form an unstable nucleus and a free neutron.

The unstable nucleus decays by positron emission to form a nucleus of nuclide X.

What is X?

[1 mark]

- A $^{13}_{5}\mathrm{B}$
- 0
- ${\bf B} \ {}^{13}_{6}{\rm C}$
- 0
- **c** $^{13}_{7}$ N
- 0
- $D_{8}^{13}O$
- 0

The diagram shows the ground state and two higher-energy states **X** and **Y** of an atom.

A transition from ${\bf X}$ to the ground state produces a photon of wavelength $147~{\rm nm}.$

A transition from Y to the ground state produces a photon of wavelength 160 nm.

What is the energy difference between \boldsymbol{X} and \boldsymbol{Y} ?

[1 mark]

- **A** $1.5 \times 10^{-17} \,\mathrm{J}$
- **B** 1.4 × 10^{−18} J
- C 1.2 × 10^{−18} J
- **D** 1.1 × 10⁻¹⁹ J

10. June /2022/Paper_ 7407/2/No.13

Which provides evidence for discrete atomic energy levels?

[1 mark]

A β⁺ decay

- 0
- B electron diffraction
- 0

C line spectra

- 0
- **D** the photoelectric effect
- 0