AQA - Magnetic fields - 2022 A2 Physics P2

- 1. June /2022/Paper_ 7408/2/No.5
 - 0 5 Figure 7 shows a transformer.

Figure 7

0 5 . 1 Explain the functions of the core and the secondary coil.

0 5. 2 Figure 8 shows a cross-section through the transformer core. Thin iron sheets are separated by material M.

Explain how the efficiency of the transformer is increased by constructing the core in this way.

[3 marks]

Figure 9 shows a schematic diagram of a power transmission system.

Figure 9

0 5. 3 Voltages between 33 kV and 400 kV are used for long-distance transmission.

Suggest why engineers have chosen $132\ kV$ for this system.

[2 marks]

	aqasolvedexampapers.co.uk
0 5.4	The industrial consumers use $72~\mathrm{MW}$ of power. Transformers 1 and 2 each have an efficiency of 98% and the transmission line has an efficiency of 94% .
	Calculate the current in the $25~\mathrm{kV}$ line from the power station. [3 marks]

2. June /2022/Paper_ 7408/2/No.14

When an electron moves at a speed v perpendicular to a uniform magnetic field of flux density B, the radius of its path is R.

A second electron moves at a speed $\frac{v}{2}$ perpendicular to a uniform magnetic field of flux density 4B.

What is the radius of the path of the second electron?

[1 mark]

A $\frac{R}{8}$

0

 $\mathbf{B} \ \frac{R}{4}$

0

C 2R

0

D 8*R*

0

3. June /2022/Paper_ 7408/2/No.22

A horizontal wire of length 0.25~m carrying a current of 3.0~A is perpendicular to a magnetic field. The mass of the wire is $3.0\times10^{-3}~kg$ and the weight of the wire is supported in equilibrium by the magnetic field.

What is the flux density of the magnetic field?

[1 mark]

A 2.6 T

0

B $3.9 \times 10^{-2} T$

0

 $c 2.2 \times 10^{-2} T$

0

 $\textbf{D}~4.0\times10^{-3}~T$

0

4. June /2022/Paper_ 7408/2/No.23

A coil is rotated at frequency f in a uniform magnetic field.

The magnetic flux linking the coil is a maximum at time t_1 and the emf induced in the coil is a maximum at time t_2 .

What is the smallest value of $t_1 - t_2$?

[1 mark]

A 0

0

 $\mathbf{B} \ \frac{1}{4f}$

0

c $\frac{1}{2f}$

0

D $\frac{3}{4f}$

0

5. June /2022/Paper_ 7408/2/No.24

Power P is dissipated in a resistor of resistance R carrying a direct current I.

A second resistor of resistance 2R carries an alternating current with peak value I.

What is the power dissipated in the second resistor?

[1 mark]

A $\sqrt{2}P$

0

BP

0

C 2*P*

0

D 4P

0