
Force, energy and momentum – A2 Physics P1 2022

1. June /2022/Paper_ 7408/1/No.3

0 3 Figure 3 shows a garden gate with a pulley system designed to close the gate.

Figure 3

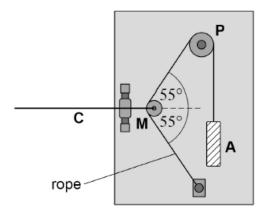
The pulley system raises weight **A** when the gate is opened. When the gate is released, **A** falls. The horizontal cable **C** passes over pulley **R**. The tension in cable **C** causes the gate to close.

Weight A is a solid cylinder with the following properties:

 $\begin{array}{ll} \mbox{diameter} = & 4.8 \times 10^{-2} \, m \\ \mbox{length} & = & 0.23 \, m \\ \mbox{weight} & = & 35 \, N \end{array}$

Table 2 gives the density of three available materials.

Table 2


Material	Density / kg m ⁻³
concrete	2.4×10^{3}
iron	7.8×10^{3}
brass	8.6 × 10 ³

aqasolvedexampapers.co.uk

0 3 . 1	Deduce which one of the three materials is used for A .	[3 marks]

Figure 4 shows the pulley arrangement when the gate is closed.

Figure 4

Pulleys $\bf P$ and $\bf M$ are frictionless so that the tension in the rope attached to $\bf A$ is equal to the weight of $\bf A$.

 $\boldsymbol{\mathsf{A}}$ weighs $35\ N$ and the weight of moveable pulley $\boldsymbol{\mathsf{M}}$ is negligible.

[2 marks]

0 3. 3 Pulley M is pulled to the left as the gate is opened.

Explain why this increases the tension in the horizontal cable ${\bf C}.$

[2 marks]

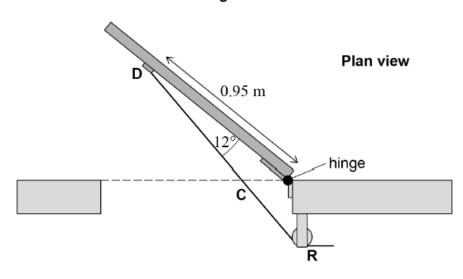

0 3 . 4

Figure 5 shows a plan view with the gate open. The horizontal cable ${\bf C}$ passes over pulley ${\bf R}$ and is attached to the door at ${\bf D}$.

The angle between the door and the horizontal cable ${\bf C}$ is 12° .

The horizontal distance between the hinge and ${\bf D}$ is 0.95~m.

Figure 5

The tension in the horizontal cable ${\bf C}$ is now $41~{\rm N}.$

Calculate the moment of the tension about the hinge.

[2 marks]

moment = N m

aqasolvedexampapers.co.uk

0 3 . 5

0 3 . 5	The same system is attached to an identical gate with stiffer hinges. Now the system does not supply a sufficiently large moment to close the gate.			
	Discuss two independent changes to the design to increase the moment about the hinges due to horizontal cable C .			
	[4 marks]			
	1			
	2			

2. June /2022/Paper_ 7408/1/No.9

A car travels at $100 \ \mathrm{km} \ \mathrm{h}^{-1}$ on a motorway.

What is an estimate of its kinetic energy?

[1 mark]

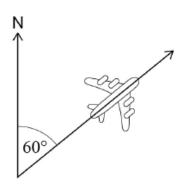
 $\mathbf{A} \ 10^4 \, \mathrm{J}$

0

 $B 10^6 J$

0

 $C 10^8 \, \mathrm{J}$


0

 $D 10^{10} J$

0

3. June /2022/Paper_ 7408/1/No.22

An aeroplane flies horizontally at $150~\mathrm{m~s^{-1}}$ along a bearing 60° east of north.

How far north from its starting position is the aeroplane after one hour?

[1 mark]

- **A** 270 km
- 0
- **B** 470 km
- 0
- C 510 km
- 0
- **D** 540 km
- 0

4. June /2022/Paper_ 7408/1/No.23

A ball is thrown vertically upwards and returns to its original position $2.4~\mathrm{s}$ later. The effect of air resistance is negligible.

What is the total distance travelled by the ball?

[1 mark]

- **A** 5.9 m
- 0
- **B** 7.1 m
- 0
- **C** 14 m
- 0
- **D** 28 m
- 0

5. June /2022/Paper_ 7408/1/No.25

A parachutist descends to the ground at a constant speed with the parachute open.

Which force, together with the parachutist's weight, makes a pair according to Newton's third law of motion?

[1 mark]

A the drag force on the parachutist from the air

B the tension in the strings of the parachute

\leq	\supset	

C the gravitational force of the parachutist on the Earth

0

D the lift force on the parachute from the air

0

6.	June ,	/2022/Paper	7408/1/No.26
	/		

A tennis ball has a mass of 58 g.

The ball is dropped from rest from a height of $1.8\ m$ above the ground and falls vertically.

The ball rebounds vertically to a height of $1.1\ m.$

The effect of air resistance is negligible.

What is the change in momentum of the ball during its collision with the ground?

[1 mark]

- **A** 0.040 N s
- **B** 0.075 N s
- C 0.215 N s
- **D** 0.614 N s