AQA - Electric fields - 2022 A2 Physics P2

- **1.** June /2022/Paper_ 7408/2/No.3(3.1 _ 3.2)
 - 0 3 An isolated solid conducting sphere is initially uncharged. Electrons are then transferred to the sphere.
 - 0 3 . State and explain the location of the excess electrons.

[2 marks]

Figure 3 shows how the electric potential V varies with distance r from the centre of the sphere.

The radius of the sphere is 0.10 m.

Figure 3

0 3. **2** The magnitude of the electric field strength E is related to V by $E = \frac{\Delta V}{\Delta x}$.

Determine, using this relationship, the magnitude of the electric field strength at a distance $0.30\ m$ from the centre of the sphere.

State an appropriate SI unit for your answer.

[4 marks]

electric field strength = _____ unit _____

2. June /2022/Paper_ 7408/2/No.15

A particle of mass m and charge Q is accelerated from rest through a potential difference V. The final velocity of the particle is u.

A second particle of mass $\frac{m}{2}$ and charge 2Q is accelerated from rest through a potential difference 2V.

What is the final velocity of the second particle?

[1 mark]

A $\sqrt{2}u$

0

B $2\sqrt{2}u$

0

C 4*u*

0

D 8*u*

0

3. June /2022/Paper_ 7408/2/No.16

The diagram shows a uniform electric field of strength $15~\mathrm{V}~\mathrm{m}^{-1}.$

The length RS is perpendicular to the field and the line ST is parallel to the field.

What is the total change in electrical potential energy for a charge of $3.0~\mu C$ moving from R to T?

[1 mark]

A 135 μJ

0

B 180 μJ

0

C 225 µJ

0

 $\textbf{D} \ 315 \ \mu J$

0