<u>Sequence and series – A2 Mathematics P1</u>

1. June/2022/Paper_7357/01/No.2

The curve

$$y = \log_4 x$$

is transformed by a stretch, scale factor 2, parallel to the *y*-axis.

State the equation of the curve after it has been transformed.

Circle your answer.

[1 mark]

$$y = \frac{1}{2}\log_4 x$$
 $y = 2\log_4 x$ $y = \log_4 2x$ $y = \log_8 x$

	2.	June/2022/	/Paper	7357	/01/No.6
--	----	------------	--------	------	----------

(a)	Find the first tv	vo terme i	in ascendina	nowers of v	of the	hinomial	evnansion	of
(a)	FIND THE HIST IN	vo terms, i	in ascending	powers or x .	or trie	Difformat	expansion	ΟI

 $\left(1-\frac{x}{2}\right)^{\frac{1}{2}}$

[2 marks]

(b)	Hence.	for small	values	of x .	show	that

$$\sin 4x + \sqrt{\cos x} \approx A + Bx + Cx^2$$

where A, B and C are constants to be found.

[4 marks]

3	June/2022	/Paner	7357	/ ₀₁	/No 9	q
J.	Julie/ 2022	./rapei	1331	/ U I	/ INO.:	J

The first three terms of an arithmetic sequence are given by

$$2x + 5$$
 $5x + 1$ $6x + 7$

Show that $x = 5$ is	uence. [3 mark	
Write down the value	ue of the first term of the sequence.	[1 ma

aqasolvedexampapers.co.uk

1)	Find the value of the common difference of the sequence.	[1 ma
	The course of the first Mannes of the critical accordance in Courbons	
	The sum of the first N terms of the arithmetic sequence is S_N where	
	$S_N < 100000$	
	$S_{N+1} > 100000$	
	Find the value of N .	[4 ma

		aqasolvede	exampapers.co.uk	
4.	June/202	22/Paper_7357/01/No.12		
	(a)	A geometric sequence has first to	erm 1 and common ratio $\frac{1}{2}$	
	(a) (i)	Find the sum to infinity of the sec	quence.	[2 marks]
	(a) (ii)	Hence, or otherwise, evaluate	∞	
			$\sum_{n=1}^{\infty} (\sin 30^{\circ})^n$	[2 marks

$\sum_{n=1}^{\infty} (\sin 30^{\circ})^n$	
	[2 marks

aqasolvedexampapers.co.uk

Find the smallest positive exact value of θ , in radians, which satisfies the equation

(b)

$\sum_{n=0}^{\infty} (\cos \theta)^n = 2 - \sqrt{2}$	[4 marks