Matrices - A2 Further Mathematics P2

1. June/2022/Paper_7367/02/No. 11
(a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
\mathbf{M}=\left[\begin{array}{cc}
\frac{5}{2} & -\frac{3}{2} \\
-\frac{3}{2} & \frac{13}{2}
\end{array}\right]
$$

\qquad
(b) (i) Describe how the directions of the invariant lines of the transformation represented by \mathbf{M} are related to each other.

Fully justify your answer.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (ii) Describe fully the transformation represented by \mathbf{M}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. June/2022/Paper_7367/02/No. 13
(a) The matrix \mathbf{A} represents a reflection in the line $y=m x$, where m is a constant.

Show that $\mathbf{A}=\left(\frac{1}{m^{2}+1}\right)\left[\begin{array}{cc}1-m^{2} & 2 m \\ 2 m & m^{2}-1\end{array}\right]$
You may use the result in the formulae booklet.
\qquad
(b) The matrix \mathbf{B} is defined as $\mathbf{B}=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$

Show that $(\mathrm{BA})^{2}=k \mathbf{I}$
where \mathbf{I} is the 2×2 identity matrix and k is an integer.
\qquad
(c) (i) The diagram below shows a point P and the line $y=m x$

Draw four lines on the diagram to demonstrate the result proved in part (b).
Label as P^{\prime} the image of P under the transformation represented by (BA) ${ }^{2}$

(c) (ii) Explain how your completed diagram shows the result proved in part (b).
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The matrix \mathbf{C} is defined as $\mathbf{C}=\left[\begin{array}{cc}\frac{12}{5} & \frac{9}{5} \\ \frac{9}{5} & -\frac{12}{5}\end{array}\right]$

Find the value of m such that $\mathbf{C}=\mathbf{B A}$
Fully justify your answer.
\qquad

