<u>Kinematics – A2 Mathematics P2</u>

1. June/2022/Paper_7357/02/No.12

A car is travelling along a straight horizontal road with initial velocity $u\,\mathrm{m}\,\mathrm{s}^{-1}$

The car begins to accelerate at a constant rate $a\,\mathrm{m\,s^{-2}}$ for 5 seconds, to reach a final velocity of $4u\,\mathrm{m\,s^{-1}}$

Express a in terms of u.

Circle your answer.

[1 mark]

$$a = 0.2u$$

$$a = 0.4u$$

$$a = 0.6u$$

$$a = 0.8u$$

2.	June	/2022	/Paper_	7357	/02/1	No.13

In this question use $g = 9.8 \,\mathrm{m\,s^{-2}}$

A ball is projected from a point on horizontal ground with an initial velocity of $7\,\mathrm{m\,s^{-1}}$ at an angle θ above the horizontal.

The ball reaches a maximum vertical height of h metres above the ground.

(a) Show that

$h = 2.5 \sin^2 \theta$	[3 marks]
 	-

aqasolvedexampapers.co.uk

Hence, given that $0^{\circ} \le \theta \le 60^{\circ}$, find the maximum value of h .	[2 marks
Nisha claims that the larger the size of the ball, the greater the maximu height will be.	m vertical
State whether Nisha is correct, giving a reason for your answer.	[1 mark]
	[1 IIIaik

3. June/2022/Paper_7357/02/No.15

A car is moving in a straight line along a horizontal road.

The graph below shows how the car's velocity $v \, \text{m} \, \text{s}^{-1}$ changes with time, t seconds.

Over the period $0 \le t \le 15$ the car has a total displacement of -7 metres.

Initially the car has velocity $0\,\mathrm{m\,s^{-1}}$

Find the next time when the velocity of the car is 0 m s⁻¹

[4 marks]

4.	June/2022/	/Paper	7357	/02/	No.17

A particle is moving such that its position vector, ${\bf r}$ metres, at time t seconds, is given by

$$\mathbf{r} = \mathbf{e}^t \cos t \, \mathbf{i} + \mathbf{e}^t \sin t \, \mathbf{j}$$

Show that the **magnitude** of the acceleration of the particle, $a \, \text{m} \, \text{s}^{-2}$, is given by

$$a = 2e^t$$

Fully justify your answer.	[7 marks