<u>Integration – A2 Mathematics P1</u>

- 1. June/2022/Paper_7357/01/No.14(b)
 - (b) Show that the exact area is given by

$$32\ln 2 - \frac{33}{2}$$

Fully justify your answer.	[6 marks

2.	June	/2022	/Paper	7357	/01	/No.15	(b	١

(b) (i) Use the substitution

$$x = 2 \csc u$$

to show that

$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \mathrm{d}x \qquad \text{for } x > 2$$

can be written as

$$k \int \sin u \, du$$

where \boldsymbol{k} is a constant to be found.	[6 marks

(b) (ii) Hence, show

$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \, \mathrm{d}x = \frac{\sqrt{x^2 - 4}}{4x} + c \qquad \text{for } x > 2$$

where c is a constant.	[3 marks