Further algebra and functions – AS Further Mathematics P1

1. June/2022/Paper_7366/01/No.2

The quadratic equation $x^2 + px + q = 0$ has roots α and β

Which of the following is equal to $\alpha\beta$?

Circle your answer.

[1 mark]

p

q

-q

- 2. June/2022/Paper_7366/01/No.9
 - Show that, for r > 0, (a)

$$\ln(r+2) - \ln r = \ln\left(1 + \frac{2}{r}\right)$$

[1 mark]

(b) Hence, using the method of differences, show that

$$\sum_{r=1}^{n} \ln\left(1 + \frac{2}{r}\right) = \ln\left(\frac{1}{2}(n+a)(n+b)\right)$$

where a and b are integers to be found.

[4 marks]

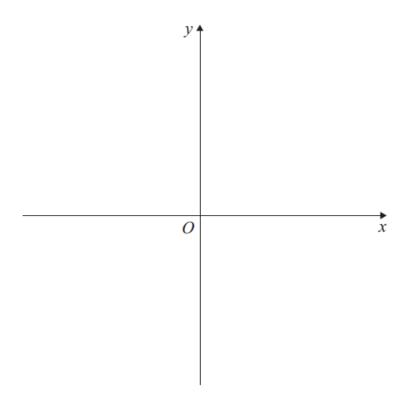
3. June/2022/Paper_7366/01/No.13

A curve C_1 has equation

$$y = \frac{2x+7}{3x+5}$$

(a) Write down the equations of the asymptotes of curve C_1

[2 marks]



(b) On the axes below, sketch the graph of curve C_1

Indicate the values of the intercepts of the curve with the axes.

[3 marks]

	2x+7	
	$\frac{2x+7}{3x+5} \ge 0$	
		[2
Curve C_2 is a reflection of cur	rve C_1 in the line $y = -x$	
Curve C_2 is a reflection of cur		
Curve C_2 is a reflection of cur		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3

4	lune	/2022	/Paper_	7366	/01	/No 1	14
\lnot.	Julie	/ 2022	/rapei	7300	/ U I	/ INO. 1	14

The function f is defined by

$$f(x) = \frac{x^2 - 3}{x^2 + px + 7} \qquad x \in \mathbb{R}$$

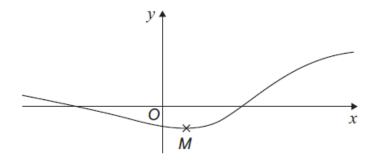
where p is a constant.

The graph of y = f(x) has only one asymptote.

(a) Write down the	e equation of	the asymptote
--------------------	---------------	---------------

•		[1 mark]

(b)	Find the set of possible values of p	
		[4 marks]


aqasolvedexampapers.co.uk

C)	Find the coordinates of the points at which the graph of $y = f(x)$ intersects the axes. [3 marks

(d) A curve C has equation

$$y = \frac{x^2 - 3}{x^2 - 3x + 7}$$

The curve C has a local minimum at the point M as shown in the diagram.

The line y = k intersects curve C

(d) (i) Show that

$$19k^2 - 16k - 12 \le 0$$
 [5 marks]

	aqasolvedexampapers.co.uk	
(d) (ii)	Hence, find the y -coordinate of point M	marks