Further algebra and functions – A2 Further Mathematics P2

1. June/2022/Paper_7367/02/No.3

The roots of the equation $x^2 - px - 6 = 0$ are α and β

Find $\alpha^2 + \beta^2$ in terms of p

Circle your answer.

[1 mark]

$$p^2 - 6$$

$$p^{2} + 6$$

$$p^2 - 6$$
 $p^2 + 6$ $p^2 - 12$

$$p^2 + 12$$

2. June/2022/Paper_7367/02/No.7

The function f is defined by

$$f(x) = \frac{ax - 5}{2x + b} \qquad x \in \mathbb{R}, \ x \neq \frac{9}{2}$$

$$x \in \mathbb{R}, x \neq \frac{9}{2}$$

where a and b are integers.

The graph of y = f(x) has asymptotes $x = \frac{9}{2}$ and y = 3

Find the value of a and the value of b (a)

[2 marks]

(b) Solve the inequalit

$$f(x) \le x + 2$$

Fully justify your answer.	[6 marks

_		
3	June/2022/Paper	7367/02/No 8

(a) The function f is defined as $f(x) = \sec x$

()	(.)	
(a) (i)	Show that $f^{(4)}(0) = 5$	[4 marks]
		[· ···ai···o

aqasolvedexampapers.co.uk

		[2
Prove that		
	$(\sec x - \cosh x)$ 1	
	$\lim_{x \to 0} \left(\frac{\sec x - \cosh x}{x^4} \right) = \frac{1}{6}$	
		[4

4. June/2022/Paper_7367/02/No.10

The curve C_1 has equation

$$\frac{x^2}{25} - \frac{y^2}{4} = 1$$

The curve C_2 has equation

$$x^2 - 25y^2 - 6x - 200y - 416 = 0$$

Find a sequence of transformations that maps the graph of C_1 onto the graph of C_2 [4 mag)

)	Find the equations of the asymptotes to C_2
	Give your answers in the form $ax + by + c = 0$ where a , b and c are integers. [3 marks]