<u>Differentiation – A2 Mathematics P3</u>

1. June/2022/Paper_7357/03/No.6

A design for a surfboard is shown in Figure 1.

Figure 1

The curve of the **top half** of the surfboard can be modelled by the parametric equations

$$x = -2t^2$$

$$y = 9t - 0.7t^2$$

for $0 \le t \le 9.5$ as shown in **Figure 2**, where x and y are measured in centimetres.

Figure 2

(a)	Find the	length of	the surfboard.
-----	----------	-----------	----------------

[2 marks]

(i)	Find an expression for $\frac{dy}{dx}$ in terms of t .		[3 mark
(ii)	Hence, show that the width of the surfboard is approximately one third of	of its	length. [4 marl

2. June/2022/Paper_7357/03/No.8

Water is poured into an empty cone at a constant rate of 8 cm³/s

After t seconds the depth of the water in the inverted cone is $h \, \mathrm{cm}$, as shown in the diagram below.

When the depth of the water in the inverted cone is $h\,\mathrm{cm}$, the volume, $V\,\mathrm{cm}^3$, is given by

$$V = \frac{\pi h^3}{12}$$

(a) Show that when t = 3

$$\frac{\mathrm{d}V}{\mathrm{d}h} = 6\sqrt[3]{6\pi}$$

[4 marks

Hence, find the rate at which the depth is increasing when $t=3$	
Give your answer to three significant figures.	[3
	Ĺ
	[0