<u>Differential equations – A2 Further Mathematics P2</u>

1. June/2022/Paper_7367/02/No.9(b_ c)

A curve passes through the point (5, 12.3) and satisfies the differential equation

$$\frac{dy}{dx} = (x^2 - 9)^{\frac{1}{2}} + \frac{2xy}{x^2 - 9}$$
 $x > 3$

Use Euler's step by step method once, and then the midpoint formula

$$y_{r+1} = y_{r-1} + 2hf(x_r, y_r), \quad x_{r+1} = x_r + h$$

(b) (i) Find the general solution of the differential equation

$\frac{dy}{dx} = (x^2 - 9)^{\frac{1}{2}} + \frac{2xy}{x^2 - 9}$	(x > 3)	[6 marks]

aqasolvedexampapers.co.uk

(11)	Given that y satisfies the differential equation in part (b)(i) and that $y = 12.3$ $x = 5$, find the value of y when $x = 5.2$	when
	Give your answer to six significant figures.	[3 marks]
	Comment on the accuracy of your answer to part (a).	<u>-</u>
		[1 mark]

2.	June	/2022	/Paper_	7367	/02	/No.14

On an isolated island some rabbits have been accidently introduced.

In order to eliminate them, conservationists have introduced some birds of prey.

At time t years ($t \ge 0$) there are x rabbits and y birds of prey.

At time t = 0 there are 1755 rabbits and 30 birds of prey.

When t > 0 it is assumed that:

- the rabbits will reproduce at a rate of a\% per year
- each bird of prey will kill, on average, b rabbits per year
- the death rate of the birds of prey is c birds per year
- the number of birds of prey will increase at a rate of d% of the rabbit population per year.

This system is represented by the coupled differential equations:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.4x - 13y\tag{1}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0.01x - 1.95\tag{2}$$

State the value of a , the value of b , the value of c and the value of d	[2 ma
Solve the coupled differential equations to find both \boldsymbol{x} and \boldsymbol{y} in terms of t	[9 ma

aqasoivedexampapers.co.uk

aqasolvedexampapers.co.uk

show that the cons	hat x and y are both positive for $0 \le t \le 5$, use your answer at the conservationists' plan will succeed.				
				[3 r	