Coordinate geometry – A2 Mathematics P1

1. June/2022/Paper_7357/01/No.1

A curve is defined by the parametric equations

$$x = \cos \theta$$
 and $y = \sin \theta$ where $0 \le \theta \le 2\pi$

Which of the options shown below is a Cartesian equation for this curve?

Circle your answer.

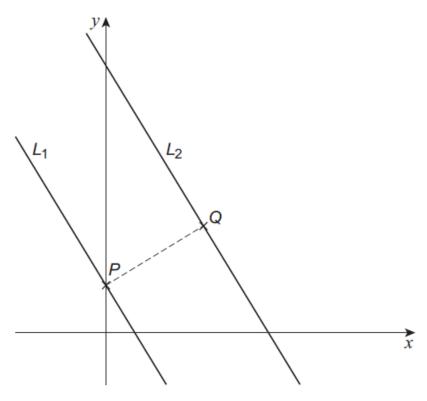
[1 mark]

$$\frac{y}{x} = \tan \theta$$
 $x^2 + y^2 = 1$ $x^2 - y^2 = 1$ $x^2y^2 = 1$

2. June/2022/Paper_7357/01/No.8

The lines L_1 and L_2 are parallel.

 L_1 has equation


$$5x + 3y = 15$$

and L_2 has equation

$$5x + 3y = 83$$

 L_1 intersects the *y*-axis at the point *P*.

The point Q is the point on L_2 closest to P, as shown in the diagram.

(a) (i) Find the coordinates of Q.

[5	marks]

	aqasoivedexampapers.co.uk	
a) (ii)	Hence show that $PQ = k\sqrt{34}$, where k is an integer to be found.	
		[2 mark

(b)	A circle, C , has centre $(a, -17)$.		
	L_1 and L_2 are both tangents to C .		
(b) (i)	Find a.	[2 marks	
(b) (ii)	Find the equation of C.	[2 marks	