Complex numbers – A2 Further Mathematics P1

1. June/2022/Paper_7367/01/No.2

Simplify

$$\frac{\cos\left(\frac{6\pi}{13}\right) + i\sin\left(\frac{6\pi}{13}\right)}{\cos\left(\frac{2\pi}{13}\right) - i\sin\left(\frac{2\pi}{13}\right)}$$

Tick (✓) one box.

[1 mark]

$$\cos\left(\frac{8\pi}{13}\right) + i\sin\left(\frac{8\pi}{13}\right)$$

$$\cos\left(\frac{8\pi}{13}\right) - i\sin\left(\frac{8\pi}{13}\right)$$

$$\cos\left(\frac{4\pi}{13}\right) + i\sin\left(\frac{4\pi}{13}\right)$$

$$\cos\left(\frac{4\pi}{13}\right) - i\sin\left(\frac{4\pi}{13}\right)$$

2. June/2022/Paper_7367/01/No.5(a)

It is given that $z=-\frac{3}{2}+i\frac{\sqrt{11}}{2}$ is a root of the equation

$$z^4 - 3z^3 - 5z^2 + kz + 40 = 0$$

where k is a real number.

(a) Find the other three roots.

[5 marks]

- 3. June/2022/Paper_7367/01/No.8
 - (a) The complex number w is such that

$$\arg(w+2\mathrm{i})=\tan^{-1}\frac{1}{2}$$

It is given that w = x + iy, where x and y are real and x > 0

Find an equation for y in terms of x	[2 marks]

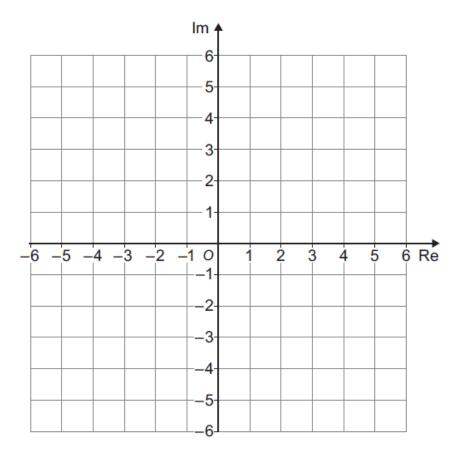
(b) The complex number z satisfies both

$$-\frac{\pi}{2} \le \arg(z+2i) \le \tan^{-1}\frac{1}{2}$$
 and $|z-2+3i| \le 2$

The region R is the locus of z

Sketch the region R on the Argand diagram below.

[4 marks]

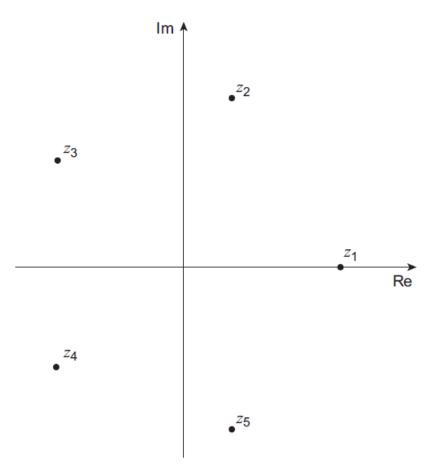


aqasolvedexampapers.co.uk

(c)	z_1 is the point in R at which $ z $ is minimum.	
(c) (i)	Calculate the exact value of $ z_1 $	[3 marks]
(c) (ii)	Express z_1 in the form $a+\mathrm{i}b$, where a and b are real.	[2 marks]

4. June/2022/Paper_7367/01/No.12

The Argand diagram shows the solutions to the equation $z^5=1$



(a) Solve the equation

$$z^5 = 1$$

giving your answers in the form $z=\cos\theta+i\sin\theta$, where $0\leq\theta<2\pi$

[2 marks]

aqasolvedexampapers.co.uk

part (a) are the vertices of	a regular pentagon.	
		[2
Show that if $c = \cos \theta$, whethen c satisfies the equation	Here $z = \cos \theta + i \sin \theta$ is a solution	to the equation
then c satisfies the equation	in .	
anon o canonos uno equano.		
or o canones me equane	$16c^5 - 20c^3 + 5c - 1 = 0$	[5
		[5
		[5
		[5
		[5
		[5
		[5
		[5
		[5
		[5
		[5
		[5
		[5
		[5