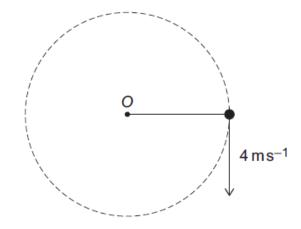
## Circular motion – AS Further Mathematics Mechanics

## 1. June/2022/Paper\_7366/02/No.8


A particle, of mass 3 kg, is attached to one end of an elastic string.

The particle is placed on a smooth horizontal table.

The other end of the string is attached to a fixed point O on the horizontal table.

The elastic string has natural length 1 metre and modulus of elasticity 200 N

The particle is set in motion so that it moves in a horizontal circle, centre O, with a constant speed of  $4 \text{ m s}^{-1}$ , as shown in the diagram below.



Throughout the motion, the extension of the string is x metres and the tension is T newtons.

(a) Show that T = 200x

[1 mark]

(b) By considering the circular motion of the particle, show that

 $25x^2 + 25x - 6 = 0$ 

[4 marks]

|                                                          | [    |
|----------------------------------------------------------|------|
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
| Hence deduce the radius of the circle.                   |      |
|                                                          | [2 r |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
|                                                          |      |
| Describe one limitation of the model that you have used. | [1   |