AQA - Waves - AS Physics P2

1. June/2021/Paper_7407_02/No.01

0 1

A student investigates stationary waves using microwaves.

Figure 1 shows a metre ruler fixed to a bench. The student places a microwave transmitter **T** at one end of the ruler and a vertical metal reflector **R** at the other end. **R** is at a right angle to the ruler.

Figure 1

view from above

The student places a microwave detector **D** approximately one-third of the distance from **T** to **R**. When **T** is switched off, the microammeter connected to **D** reads zero.

When **T** is switched on, stationary waves are produced between **T** and **R**, and the microammeter registers a current. When the student moves **D** along the ruler, the size of the current changes between maximum and minimum values.

The student measures the current at different positions of **D** along the ruler to identify a position **P** of the minimum current.

Figure 2 is a plot of the measurements taken near P.

0 1 . 1 Draw a line of best fit for these data.

[2 marks]

0 1 State a value for the position of P.

[1 mark]

position of P = cm

The student moves $\bf D$ along the metre ruler towards $\bf R$ and observes a series of maximum and minimum readings on the microammeter. He identifies $\bf Q$ as the position of the $\bf 8th$ minimum current from $\bf P$. He measures the distance $\bf PQ$ to be $\bf 50.9~cm$, as shown in Figure 3.

0 1 \cdot 3 The absolute uncertainty in identifying any minimum current is ± 0.2 cm.

Determine the percentage uncertainty in the distance PQ.

[2 marks]

percentage uncertainty in PQ = _______%

0 1 Deduce the frequency of the microwaves produced by T.

[3 marks]

0 1 . 5

5 Figure 4 shows D placed at a position where the current is a maximum.

Figure 4

The student rotates **D** by 90° , without changing its distance from **T**, to the position shown in **Figure 5**. The current is now zero.

Figure 5

State the property of microwaves that is shown by this change in current.

2. June/2021/Paper_7407_02/No.15

A progressive wave travels along a rope in the direction M to N.

X marks a point on the rope.

The wave has a frequency of $5.0~\mathrm{Hz}$, a wavelength of $1.0~\mathrm{m}$ and an amplitude of $0.20~\mathrm{m}$.

Where will X be after 0.15 s?

[1 mark]

- A below MN by $0.20~\mathrm{m}$

0

- $\textbf{B}\,$ above MN by $0.20\;m$
- C~nearer~N~by~0.15~m
- 0
- $\textbf{D}\,$ nearer N by 0.75~m
- 0
- **3.** June/2021/Paper_7407_02/No.17

The diagram shows a string stretched between two fixed points ${\bf O}$ and ${\bf R}$ which are $120~{\rm cm}$ apart.

P and Q are points on the string.

$$\mathbf{OP} = 30 \text{ cm}$$

$$\mathbf{OQ} = 90 \text{ cm}$$

At a certain frequency the string vibrates at its first harmonic.

P and Q oscillate in phase.

The frequency is gradually increased.

What is the next harmonic at which **P** and **Q** will oscillate in phase?

- A second
- B third
- C fourth
- D fifth

4. June/2021/Paper_7407_02/No.18

A ray of light is incident on the internal boundary of a rectangular glass block in air.

Part of the light refracts out of the block at an angle of 30° .

Some of the remaining light reflects within the block to become incident on the right-hand boundary.

refractive index of glass = 1.48

not to scale

What is the angle of incidence of the ray at the right-hand boundary?

- **A** 20°
- B 42° ○
- C 48°
- **D** 70°

5. June/2020/Paper_7407_02/No. 01.1_ 01.3

0 1

A student places a transparent semicircular block on a sheet of paper and draws around the block. She directs a ray of light at the centre of the flat edge of the block.

Figure 1 shows the path of the ray through the block.

Figure 1

0 1 State why the emergent ray does not change direction as it leaves the block.

[1 mark]

0 1 . 2

The student draws an arrow on the paper to mark the incident ray. She marks the path of the emergent ray with crosses **A**, **B** and **C**.

She removes the block from the paper and places a protractor over the outline of the block, as shown in **Figure 2**.

Figure 2

 $^{\times}$ c

Determine, using Figure 2, the refractive index of the block.

[4 marks]

refractive index =

The student uses a different method to determine the refractive index of the block. She focuses a travelling microscope on some dots on a sheet of paper for each of the three situations shown in **Figure 3**.

eyepiece of travelling microscope

fixed scale

paper block on top of paper on top of block

Table 1 shows the readings made by the student.

scale

reading = R_0

Table 1

scale

reading = R_1

scale

reading = R_2

R_0 / mm	$R_1/$ mm	R_2 / mm
5.74	10.31	20.02

6. June/2020/Paper_7407_02/No. 03.4

The electron hits the first electrode and causes the release of several electrons.

Figure 9 shows how a series of accelerations and collisions produces a large number of electrons. These electrons hit the anode and produce a pulse of current in an ammeter.

Figure 10 shows the variation of current in the ammeter with time due to this pulse.

Determine the number of electrons that flow through the ammeter.	[4 marks]
number of all strong -	
number of electrons =	

7. June/2020/Paper_7407_02/No.12

A wave travels along a water surface.

The variation with time of the displacement of a water particle at the surface is shown.

What properties of the wave are represented by w and z?

[1 mark]

	w	z	
Α	phase	frequency	0
В	amplitude	wavelength	0
С	wavelength	phase	0
D	amplitude	period	0

8. June/2020/Paper_7407_02/No.13

Two points on a progressive wave are out of phase by 0.41 rad.

What is this phase difference?

[1 mark]

A 23°

0

B 47°

0

C 74°

0

D 148°

0

9. June/2020/Paper_7407_02/No.14

Light of wavelength λ is incident normally on two parallel slits of separation s. Fringes of spacing w are seen on a screen at a distance D from the slits.

Which row gives another arrangement that produces a fringe spacing of w?

[1 mark]

	Wavelength	Slit separation	Distance between slits and screen	
Α	2λ	2s	2 <i>D</i>	0
В	2λ	4s	2 <i>D</i>	0
С	2λ	2s	4 <i>D</i>	0
D	4λ	2s	2D	0

10. June/2020/Paper_7407_02/No.15

A narrow beam of monochromatic light is incident normally to a diffraction grating. The first-order diffracted beam makes an angle of 20° with the normal to the grating.

What is the highest order visible with this grating at this wavelength?

A 2	0
B 3	0
C 4	0
D 5	0

	/Paper_7407_02/No.16 ed of light decreases	by 40% when it travels	from air into a trar	nsparent medium.
What is	the refractive index o	f the medium?		[1 mark]
A 0.6		0		
B 1.4		0		
c 1.7		0		
D 2.5		0		
In a You		iment, monochromatic l pattern is observed on		two narrow slits
Which ch	nange decreases the	fringe separation?		[1 mark]
A decre	asing the separation	between the two slits	0	
B increa	sing the distance bet	ween the slits and the s	screen]
C using	monochromatic light	of higher frequency	0	
D using	monochromatic light	of longer wavelength	0	7