AQA - Waves - A2 Physics P1

- 1. June/2021/Paper_7408_01/No. 02
 - 0 2 Figure 1 shows apparatus used to investigate the properties of microwaves.

The microwaves from the transmitter ${\bf T}$ are vertically polarised and have a wavelength of about $3~{\rm cm}$.

The microwaves are detected at the receiver by a vertical metal rod R.

Figure 1

2 . 1 Explain how the apparatus can be used to demonstrate that the waves from T are vertically polarised.

[3 marks]

Figures 2a and 2b show T and R and two different positions of a metal plate M that reflects microwaves. M is vertical and parallel to the direct transmission from T to R.

view from above

T

Figure 2a

N

X

Figure 2b

View from above

T

R

not to scale

In an experiment, **T** and **R** are about two metres apart. **M** is moved slowly towards **X**. **Figure 2a** shows the initial position of **M**.

Figure 2b shows M when it has been moved a few centimetres.

М

The arrowed lines show the path of waves that reach R directly and the path of waves that reach R by reflection from M.

0 2.2	Explain what happens to the signal detected by R as M is moved slowly towards X . [4 marks]

Figure 3 shows an arrangement used in a different experiment to try to determine the wavelength of the microwaves.

A double-slit arrangement is placed between **T** and **R**.

The initial position of ${\bf R}$ is the same distance from each slit and is $0.45~{\rm m}$ from the midpoint of the two slits.

AB is a line perpendicular to the line between T and the initial position of R. R can be moved $0.25~\mathrm{m}$ towards A and $0.25~\mathrm{m}$ towards B along AB.

The two slits act as two coherent sources with a separation of 0.12 m.

0 2 . 3	Suggest why Young's double-slit equation should not be used to determine the wavelength.		
	, and the second	[1 mark]	

0 2 . 4	The wavelength is known to be about 3 cm.
	Deduce whether this practical arrangement is suitable for a determination of a value for the wavelength.
	[3 marks]

2	June/2021/Pap	ner 7/108	01/No	ΛZ
Z.	Julie/2021/Pak	Jei_/400_	_01/100.	U3

0 3

Figure 4 shows a ray of monochromatic light incident at angle A from air onto the end of a straight optical fibre.

This ray undergoes total internal reflection at the core-cladding boundary. A ray that enters the optical fibre at an angle greater than A will only be partially reflected at the core-cladding boundary.

Figure 4

Table 2 shows some properties of the optical fibre.

Table 2

	Refractive index
cladding	1.41
core	1.47

0	3	1	Calculate the speed of the light ray in the optical f	fibre

$$\mathsf{speed} = \underline{\qquad \qquad } \mathsf{m} \; \mathsf{s}^{-1}$$

 $\boxed{\mathbf{0} \ \mathbf{3}}$. $\boxed{\mathbf{2}}$ Calculate A, in degrees, for the optical fibre shown in **Figure 4**.

[3 marks]

A= degree

0 3. A ray is incident on the optical fibre at angle A. The optical fibre is now bent, as shown in **Figure 5**.

Figure 5

Draw, on **Figure 5**, what happens to the ray within the optical fibre. Explain your answer.

		[3 marks]

The diagrams show the displacement-distance graph for a wave and the displacement-time graph for a point in the wave.

displacement / m

displacement / m

Which is correct for this wave?

- A The amplitude is $3.0\ m.$
- 0
- **B** The wavelength is 6 m.
- 0
- C The speed is $8.3~\mathrm{m~s^{-1}}$.
- 0
- **D** The frequency is $0.17~\mathrm{Hz}.$
- 0

The diagram shows a stationary wave on a string at one instant in time.

P, Q and R are three points on the string.

Which row is correct?

Α	P is in antiphase with R	P has the same amplitude as Q	0
В	P is out of phase with R	P has the same amplitude as R	0
С	P is in phase with Q	P has the same amplitude as R	0
D	P is out of phase with Q	P has a smaller amplitude than R	0

_							
5.	June	/2021	/Paper_	7408	01	/No.	19

A diffraction grating is illuminated normally.

The second-order maximum for light of wavelength $650~\mathrm{nm}$ occurs at the same angle as the third-order maximum for light of wavelength λ .

What is λ ?

- **A** 217 nm
- B 325 nm
- C 433 nm
- **D** 975 nm

0 3

A student investigates the interference of sound waves using two loudspeakers, **P** and **Q**, connected to a signal generator (oscillator). Each loudspeaker acts as a point source of sound.

Figure 3 shows the arrangement.

Figure 3

Point O is the midpoint between P and Q.

0 3 . 1	Explain why the two loudspeakers are coherent sources of sound waves.	[2 marks]

0 3 . 2	The student faces the two loudspeakers at point A . Point A is at equal distances from P and Q .
	He then moves to point B , at right angles to the line OA , still facing the two loudspeakers.
	As his head moves from A to B the amplitude of the sound wave he hears decreases and then increases. The amplitude starts to decrease again as he moves beyond B .
	Explain why the variation in amplitude occurs as he moves from A to B. [3 marks]

0 3. 5 The student moves his head to point **C** as shown in **Figure 4**. The emitted frequency of the sound from the loudspeakers is then gradually decreased.

Figure 4

Discuss the effect that this decrease in frequency has on the amplitude of the sound wave heard by the student.

		[3 marks]

A monochromatic light wave travels from glass into air.

Which row shows what happens to the wavelength, speed and photon energy?

	Wavelength	Speed	Photon energy
Α	increases	increases	increases
В	does not change	decreases	does not change
С	does not change	decreases	increases
D	increases	increases	does not change

A wave travels across the surface of water.

The diagram shows how the displacement of water particles at the surface varies with distance.

Which row correctly describes both w and z?

	w	z	
Α	amplitude	wavelength	0
В	half-amplitude	period	0
С	half-amplitude	wavelength	0
D	amplitude	period	0

The diagram shows the cross-section of a progressive transverse wave travelling at $24~{\rm cm~s^{-1}}$ on water. The amplitude of the wave is $2.0~{\rm cm}$ and the frequency is $4.0~{\rm Hz}$.

Which statement is correct?

- **A** The phase difference between particles at **P** and **S** is $\frac{\pi}{2}$ rad.
- **B** The distance between **P** and **R** is 6.0 cm.
- C The particle velocity at Q is a maximum.
- D Particles at P and R are in phase.

Unpolarised light travels through two polarising filters **X** and **Y** and is then incident on a screen. When **X** and **Y** are arranged as shown, there is a maximum intensity on the screen.

X is held stationary but **Y** is rotated in a plane at right angles to the beam so that θ increases.

What are the next three values of θ , in rad, for which the beam hits the screen with maximum intensity?

A
$$\frac{\pi}{2}, \frac{2\pi}{2}, \frac{3\pi}{2}$$

B
$$\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$$

11.		tationary waves are set up on a rope of length $1.0\ \mathrm{m}$ fixed at both ends.	
	W	/hich statement is not correct?	[1 mark
	Α	The first harmonic has a wavelength of $2.0\ \mathrm{m}.$	0
	В	The midpoint of the rope is always stationary for even-numbered harmonics.	0
	С	A harmonic of wavelength $0.4\mathrm{m}$ can be set up on the rope.	0
	D	There are five nodes on the rope for the fifth harmonic.	0
12. June/2020/Paper_7408_01/No. 19 $ \label{eq:monochromatic light is incident normally on a diffraction grating that has } 4.50 \times 10^5 \ \text{lines m}^{-1}. $ The angle between the second-order diffraction maxima is 44° . What is the wavelength of the light?			
	Α	208 nm	
	В	416 nm 🕒	
	С	772 nm	

D 832 nm