AQA - Periodic motion - A2 Physics P1

1. June/2021/Paper_7408_1/No.04

0 4 Figure 6 shows a rotating spacecraft that is proposed to carry astronauts to Mars.

Figure 6

The spacecraft consists of two parts **A** and **B** connected by a rigid cylindrical rod. When the spacecraft is travelling, **A** and **B** rotate at a constant angular speed about their common centre of mass **O**.

L is the distance between the centre of mass of **A** and the centre of mass of **B**. $r_{\rm A}$ is the distance from **O** to the centre of mass of **A**.

0 4. 1 As the spacecraft rotates, a force that imitates the effect of gravity acts on an astronaut who is in contact with the floor.

Explain why.	[2 marks]

0 4.2 The forces exerted on A and B by the connecting rod have the same magnitude.

 $m_{\rm A}$ is the mass of ${\bf A}$ $m_{\rm B}$ is the mass of ${\bf B}$

Show, by considering the centripetal forces acting on ${\bf A}$ and ${\bf B}$, that $r_{{\bf A}}$ is given by

$$r_{\rm A} = \frac{m_{\rm B}L}{m_{\rm A}+m_{\rm B}}$$

[2 marks]

0 4. **3** In this spacecraft $m_A < m_B$.

Deduce whether the centre of mass of **A** or the centre of mass of **B** rotates with a greater linear speed.

[2 marks]

The astronauts live in A and the cargo is stored in B.

When loaded,

$$m_{\rm A} = 1.32 \times 10^6 \, {\rm kg}$$

$$m_{\rm B} = 3.30 \times 10^6 \, {\rm kg}.$$

The spacecraft imitates the gravity of Mars where $g = 3.7 \text{ m s}^{-2}$.

Figure 7 shows a stress-strain curve for the metal used for the rigid rod.

Suggest a suitable diameter for the rod. Justify your answer. [5 marks] $\mathsf{diameter} = \underline{\hspace{1cm}} m$

2. June/2021/Paper_7408_1/No.30

A simple pendulum and a mass-spring system each have a time period T on the Earth.

They are taken to the surface of a planet where the acceleration due to gravity is $\frac{g}{4}$.

What are the time periods of the pendulum and the mass-spring system on this planet? [1 mark

	Simple pendulum	Mass-spring system	
Α	$\frac{T}{2}$	T	0
В	2T	T	0
С	$\frac{T}{2}$	2T	0
D	2T	2T	0

3. June/2021/Paper_7408_1/No.31

A particle of mass \boldsymbol{m} is oscillating with simple harmonic motion.

The period of the oscillation is T and the amplitude is A.

What is the maximum kinetic energy of the particle?

[1 mark]

$$\mathbf{A} \quad \frac{mA^2}{2T^2}$$

$$\mathsf{B} \ \frac{\pi^2 m A^2}{2T^2}$$

c
$$\frac{2mA^2}{T^2}$$

$$D \frac{2\pi^2 mA^2}{T^2}$$

4. June/2020/Paper_7408_1/No.04.5

0 4 . 5 At bends on motorways the road is sloped so that a car is less likely to slide out of its lane when travelling at a high speed.

Figure 7 shows a car of mass 1200~kg travelling around a curve of radius 200~m. The motorway is sloped at an angle of 5.0° .

Figure 8 shows the weight W and reaction force N acting on the car. The advisory speed for the bend is chosen so that the friction force down the slope is zero.

200 m

Figure 8

N

200 m

W

Suggest an appropriate advisory speed for this section of the motorway.	[4 marks
advisory speed =	m s ⁻¹

5. June/2020/Paper_7408_1/No.24

A particle of mass m undergoes simple harmonic motion with amplitude A and frequency f.

What is the total energy of the particle?

[1 mark]

- **A** $2\pi mfA^2$
- 0
- $\mathbf{B}\ 2\pi^2 m f^2 A^2$
- 0
- **C** $4\pi^2 m^2 f^2 A$
- 0
- **D** $4\pi^2 m f^2 A^2$
- 0

6. June/2020/Paper_7408_1/No.25

A mass of $0.90~\mathrm{kg}$ is suspended from the lower end of a light spring of stiffness $80~\mathrm{N~m}^{-1}$.

When the mass is displaced vertically and released, it undergoes vertical oscillations of small amplitude.

What is the frequency of the oscillations?

[1 mark]

- **A** 0.071 Hz
- 0
- **B** 0.67 Hz

0

C 1.50 Hz

0

D 14 Hz

0

7. June/2020/Paper_7408_1/No.30

The period of a simple pendulum is doubled when the pendulum length is increased by $1.8\ \mathrm{m}.$

What is the original length of the pendulum?

[1 mark]

A 0.45 m

0

 $\text{B}\ 0.60\ m$

0

C~0.90~m

0

D 3.6 m

0