AQA - Materials - AS Physics P2

1. June/2021/Paper_7407_02/No. 02

A student does an experiment to determine the Young modulus of a metal. **Figure 6** shows a wire made from the metal clamped at points **A** and **B** so that the wire is horizontal. The horizontal distance between **A** and **B** = 3.00 m. **C** is the mid-point on the wire between **A** and **B**.

Figure 6

A mass of weight W is suspended at ${\bf C}$ to extend the wire. Figure 7 shows that ${\bf C}$ moves vertically downwards by a distance y.

Figure 7

not to scale

0 2.1	When W is 1.0 N , y is 6.34 cm .
	Show that the wire extends by approximately $3\ \mathrm{mm}.$

0	2 .	2	Calculate the tension in the wire when	W is	1.0 N.
---	-----	---	--	------	--------

[2 marks]

[1 mark]

It can be shown that

$$\frac{W}{y} = \frac{EAy^2}{x^3} + k$$

where

E= Young modulus of the metal $A=1.11\times 10^{-7}~\rm m^2$

x = 1.50 m

k = a constant.

A student measures y for different values of W and plots the graph shown in **Figure 8**.

Figure 8

0 2 · 3 Determine *E* using **Figure 8**.

[4 marks]

E = Pa

0 2 · 4 Deduce the fundamental base units for k.

[1 mark]

fundamental base units for k =

2. June/2021/Paper_7407_02/No. 32

A wire is made from a material of density ρ .

The wire has a mass m and an initial length L.

When the tensile force in the wire is F the extension of the wire is ΔL .

What is the Young modulus of the material?

[1 mark]

A
$$\frac{F\rho L^2}{m\Delta L}$$

B
$$\frac{FL^2}{m\rho\Delta L}$$

c
$$\frac{F\rho}{m\Delta L}$$

D
$$\frac{FmL^2}{\rho\Delta L}$$

3. June/2020/Paper_7407_02/No. 26

A tensile force F_1 causes a wire to stretch to length x_1 .

When the tensile force is increased to F_2 the length of the wire is x_2 .

The wire obeys Hooke's Law.

What is the additional energy stored in the wire as the length increases from x_1 to x_2 ?

[1 mark]

A
$$\frac{F_1 + F_2}{2} \times \frac{x_2 - x_1}{2}$$

$$\frac{\mathbf{C}}{2} \frac{F_1 + F_2}{2} \times (x_2 - x_1)$$

5

4. June/2020/Paper_7407_02/No. 27

Which is a force-extension graph for a brittle material?

[1 mark]

A 0 0 0 0 D 0