AQA – Gravitational fields – A2 Physics P2

- 1. June/2021/Paper_7408_2/No.02
 - 0 2 The Global Positioning System (GPS) uses satellites to support navigation on Earth.

Show that the angular speed ω of the satellite is given by

$$\omega = \sqrt{\frac{GM}{(R+h)^3}}$$

[2 marks]

 $\boxed{\mathbf{0} \ \mathbf{2}}$. $\boxed{\mathbf{2}}$ Calculate the orbital period of the satellite when h equals $2.02 \times 10^7 \, \mathrm{m}$.

[2 marks]

orbital period = s

0 2. 3 Figure 3 shows the orbital plane of the satellite inclined at an angle to the equator. X, Y and Z are locations on the Earth.

X is at the North Pole, **Y** is on a high mountain and **Z** is on the equator.

Figure 3

The satellite is to be launched from one of the locations.

State and explain which launch site **X**, **Y** or **Z** minimises the amount of fuel required to send the satellite into its orbit.

to send the satellite into its orbit.	[2 marks]

0 2.4	The satellite has a mass of $1630\ \mathrm{kg}.$
	Calculate the gravitational potential energy of the satellite when in the orbit in Question 02.2.
	[2 marks]
	gravitational potential energy = J
0 2 . 5	A different satellite is in a higher circular orbit.
	Explain how the linear speed of this satellite compares with the linear speed of the satellite in Question 02.1.
	[2 marks]

2. June/2021/Paper_7408_2/No.11

The diagram shows gravitational equipotentials. Adjacent equipotentials are separated by an equal gravitational potential difference $\it V$.

Which point has the greatest gravitational field strength?

[1 mark]

- Α
- 0
- В
- 0
- С
- 0
- D

3. June/2021/Paper_7408_2/No.12

A planet has radius R and density ρ . The gravitational field strength at the surface is g.

What is the gravitational field strength at the surface of a planet of radius 2R and density 2ρ ?

[1 mark]

A 2g

0

B 4g

0

C 8g

0

D 16g

0

4. June/2021/Paper_7408_2/No.13

The diagram shows equipotential lines for a uniform gravitational field. The lines are separated by $20\ m.$

An object of mass 4 kg is moved from **P** to **Q**.

What is the work done against gravity to move the object?

[1 mark]

- **A** 7.2 J
- 0
- **B** 7.8 J
- 0
- **C** 10.2 J
- 0

 $\textbf{D}\ 36\ J$

0

- **5.** June/2020/Paper_7408_2/No.02
 - 0 2

Figure 2 shows a moon of mass m in a circular orbit of radius r around a planet of mass M, where $m \leq M$.

Figure 2

The moon has an orbital period T. T is related to r by

$$T^2 = kr^3$$

where k is a constant for this planet.

0 2. **1** Show that
$$k = \frac{4\pi^2}{GM}$$

[3 marks]

Table 2 gives data for two of the moons of the planet Uranus.

Table 2

Name	T / days	r / m
Miranda	1.41	1.29 × 10 ⁸
Umbriel	4.14	x

0 2. 2 Calculate the orbital radius X of Umbrie

[2 marks]

orbital radius =
$$\underline{\hspace{1cm}}$$
 $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$

[3 marks]

Table 3 gives data for three more moons of Uranus.

Table 3

Name	Mass / kg	Diameter / m
Ariel	1.27×10^{21}	1.16 × 10 ⁶
Oberon	3.03×10^{21}	1.52×10^{6}
Titania	3.49×10^{21}	1.58 × 10 ⁶

0 2.4 Deduce which moon in **Table 3** has the greatest escape velocity for an object on its surface.

Assume the effect of Uranus is negligible.

[3 marks]

0 2 . 5

A spring mechanism can project an object vertically to a maximum height of $1.0\ m$ from the surface of the Earth.

Determine whether the same mechanism could project the same object vertically to a maximum height greater than $100\ m$ when placed on the surface of Ariel.

[3 marks]

6. June/2020/Paper_7408_2/No.13

What is the angular speed of a satellite in a geostationary orbit around the Earth?

[1 mark]

A $1.2 \times 10^{-5} \text{ rad s}^{-1}$

0

B $7.3 \times 10^{-5} \text{ rad s}^{-1}$

0

 $\text{C} \ \ \, 4.4 \times 10^{-3} \ rad \ s^{-1}$

0

 $\text{D} \ \ 2.6 \times 10^{-1} \ rad \ s^{-1}$

0

7. June/2020/Paper_7408_2/No.12

The graph shows how the gravitational potential ${\it V}$ varies with the vertical distance ${\it d}$ from the surface of the Earth.

What does the gradient of the graph represent at the surface of the Earth?

[1 mark]

A potential energy

B mass of the Earth

C magnitude of the gravitational constant

D magnitude of the gravitational field strength