
AQA - Electricity - AS Physics P1

- 1. June/2021/Paper_7407_01/No.06
 - 0 6 A battery has an emf of 5.30 V and negligible internal resistance.
 - 0 6 1 State what is meant by an emf of 5.30 V for this battery.

		[2 marks]

0 6 . 2 Figure 13 shows the battery connected into a circuit.

Figure 13

The ammeter is ideal.

The voltmeter is non-ideal and has a resistance *R*.

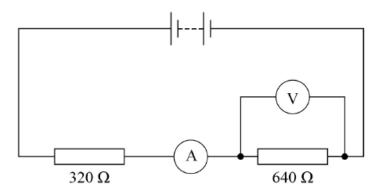
The reading on the voltmeter is $1.05~\mathrm{V}$ when it is connected across the $320~\Omega$ resistor.

Show that the reading on the ammeter is approximately 7 mA.

[2 marks]

0	6 . 3	Show that the resistance R of the voltmeter is approximately $300~\Omega$.

[3 marks]


0 6 The voltmeter is now connected across the battery terminals.

Calculate the power dissipated in the voltmeter.

[2 marks]

0 6 . 5 The voltmeter is now connected across the $640~\Omega$ resistor as shown in **Figure 14**.

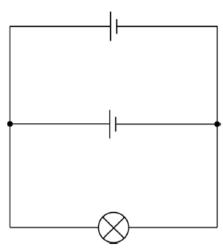
The reading on the voltmeter is $2.10\ \mathrm{V}.$

When the voltmeter was connected across the $320~\Omega$ resistor, as shown in Figure 13, the reading on the voltmeter was 1.05~V.

Explain why the sum of these voltmeter readings does **not** equal the emf of the battery.

		[2 marks

2.	June/2020/Pap	per_7407_01/No.05	
	0 5	A cell has an emf of $1.5~V$ and an internal resistance of $0.65~\Omega.$ The cell is connected to a resistor $\textbf{R}.$	
	0 5.1	State what is meant by an emf of $1.5\ \mathrm{V}.$	[2 marks]
	0 5.2	The current in the circuit is $0.31\ A.$	
		Show that the total power output of the cell is approximately $0.47\ \mathrm{W}.$	[1 mark]
	0 5.3	Calculate the energy dissipated per second in resistor R .	10
			[2 marks]
		energy dissipated per second =	J s ⁻¹


0 5 . 4	The cell stores $14\ kJ$ of energy when it is fully charged. The cell's emf and internal resistance are constant as the cell is discharged.
	Calculate the maximum time during which the fully-charged cell can deliver energy to
	resistor R. [2 marks

 $\mbox{maximum time} = \underline{\hspace{1cm}} \mbox{s}$

0 5 . 5

A student uses two cells, each of emf 1.5~V and internal resistance $0.65~\Omega,$ to operate a lamp. The circuit is shown in **Figure 7**.

The lamp is rated at 1.3 V, 0.80 W.

Deduce whether this circuit provides the lamp with $0.80~\mathrm{W}$ of power at a potential difference (pd) of $1.3~\mathrm{V}$.

Assume that the resistance of the lamp is constant.

[4 marks]

0 5 . 6	The lamp operates at normal brightness across a pd range of $1.3\ \mathrm{V}$ to $1.5\ \mathrm{V}.$			
	State and explain how more of these cells can be added to the circuit to make the lamp light at normal brightness for a longer time. No further calculations are required.			
	[3 marks]			