
AQA - Electricity - A2 Physics P1

1. June/2021/Paper_7408_1/No.06

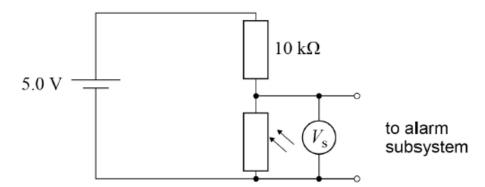

Figure 11 shows how the resistance of an LDR varies with light intensity.

Figure 11

The LDR is used as part of an alarm system in a dim room. **Figure 12** shows one proposal for a sensor circuit for this system.

Figure 12

The power supply to the sensor has an emf of $5.0~\mathrm{V}$ and a negligible internal resistance. A negligible current is drawn from the sensor circuit by the alarm subsystem.

A light beam illuminates the LDR. When the light beam is broken the LDR is not illuminated by the light beam. This causes the alarm to sound.

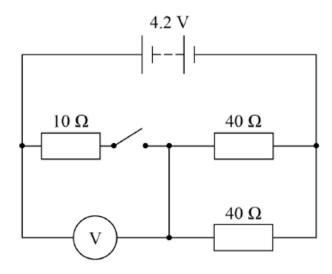
Table 3 shows how the light intensity at the LDR changes.

Table 3

	Light intensity / lux
LDR illuminated by light beam	4.0
LDR not illuminated by light beam	1.0

0 6. 1 Show that the current in the sensor circuit when the LDR is **not** illuminated by the light beam is approximately 16 μA.

[2 marks]

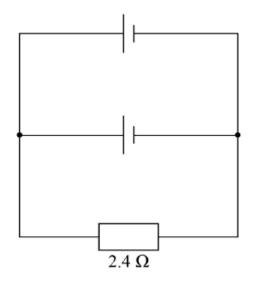

0 6. 2 The alarm sounds when the potential difference $V_{\rm S}$ across the LDR changes by more than 25% of the power supply emf.

Discuss whether the circuit shown in **Figure 12** is suitable. Support your answer with a calculation.

[3 marks]

2. June/2021/Paper_7408_1/No.27

The battery in this circuit has an emf of $4.2\;\mathrm{V}$ and negligible internal resistance.


What are the readings on the voltmeter when the switch is open (off) and when the switch is closed (on)?

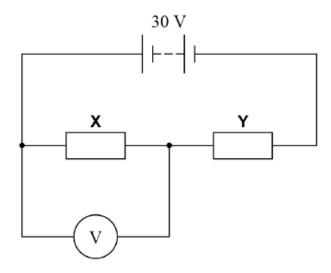
[1 mark]

	Open	Closed	
Α	0 V	2.1 V	0
В	4.2 V	2.1 V	0
С	0 V	1.4 V	0
D	4.2 V	1.4 V	0

3. June/2021/Paper_7408_1/No.28

Two identical batteries each of emf 1.5~V and internal resistance $1.6~\Omega$ are connected in parallel. A $2.4~\Omega$ resistor is connected in parallel with this combination.

What is the current in the 2.4Ω resistor?


[1 mark]

- **A** 0.38 A
- 0
- **B** 0.47 A
- 0
- $\textbf{C}\ 0.75\ A$
- 0
- **D** 0.94 A
- 0

4. June/2021/Paper_7408_1/No.29

Two resistors ${\bf X}$ and ${\bf Y}$ are connected in series with a power supply of emf $30~{\rm V}$ and negligible internal resistance.

The resistors are made from wire of the same material. The wires have the same length. \mathbf{X} uses wire of diameter d and \mathbf{Y} uses wire of diameter 2d.

What is the reading on the voltmeter?

[1 mark]

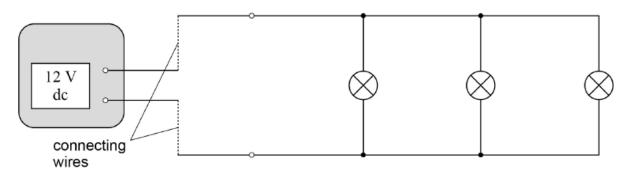
- **A** 10 V
- 0
- **B** 15 V

0

C 20 V

0

D 24 V


0

5.	luna	/วกวก	/Paper_	7//08	1	/No 05
J .	June	/2020	/Paper	7408	1	/100.05

0 5

Figure 9 shows some of the apparatus used in a demonstration of electrical power transmission using a dc power supply.

Figure 9

A power supply of emf $12~\mathrm{V}$ and negligible internal resistance is connected to three identical $12~\mathrm{V},\,1.5~\mathrm{W}$ lamps in parallel.

 $\boxed{ \textbf{0} \hspace{0.1cm} |\hspace{0.1cm} \textbf{5} \hspace{0.1cm} }$ Show that the resistance of one of the lamps when it is operating at $12 \hspace{0.1cm} \mathrm{V}$ is about $100 \hspace{0.1cm} \Omega.$

[1 mark]

0 5. Initially the power supply is connected to the lamps using two short copper wires of negligible resistance.

Calculate the current in the power supply.

[2 marks]

0	5 .	3	The two short copper wires are replaced with two long constantar	ı wires.
	┸		the the chart copper miles are replaced man the long constantal	

Show that the resistance of each length of constantan wire is about $50~\Omega$.

 $\begin{array}{lll} \text{length of each constantan wire} & = 2.8 \text{ m} \\ \text{diameter of constantan wires} & = 0.19 \text{ mm} \\ \text{resistivity of constantan} & = 4.9 \times 10^{-7} \ \Omega \text{ m} \end{array}$

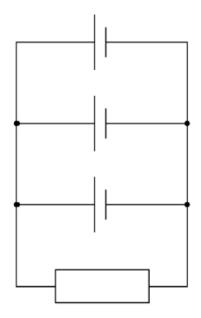
[3 marks]

Discuss whether the demonstration achieves this. Support your answer with suitable calculations.

[4 marks]

0 5 . 5	Scientists and engineers are investigating the use of superconductors in electrical transmission.
	Discuss one advantage and one difficulty when using superconductors in electrical transmission over long distances. [3 marks]
	Advantage
	Difficulty
	per_7408_1/No.27 iit below, the voltmeter reading is zero.
in the ende	P O
	R
When the t	emperature of the thermistor T is increased, the voltmeter reading changes.
Which cha	nge to the circuit will restore the voltmeter to zero? [1 mark]
A a reduct	tion in the emf of the cell
B a reduct	tion in the resistance of P

6.


9

C an increase in the resistance of Q

 ${\bf D}\,$ a reduction in the resistance of ${\bf R}\,$

7. June/2020/Paper_7408_1/No.28

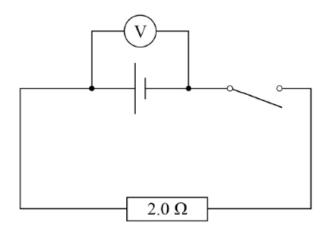
A resistor of resistance R and three identical cells of emf E and internal resistance r are connected as shown.

What is the current in the resistor?

[1 mark]

$$\mathbf{A} \quad \frac{3E}{(3R+r)}$$

$$\mathbf{B} \ \frac{9E}{(3R+r)}$$


c
$$\frac{E}{R}$$

D
$$\frac{3E}{R}$$

8. June/2020/Paper_7408_1/No.29

In the circuit, the reading of the voltmeter is V.

When the switch is closed the reading becomes $\frac{V}{3}$.

What is the internal resistance of the cell?

[1 mark]

A $0.33~\Omega$

0

B $0.67~\Omega$

0

 $\text{C}~4.0~\Omega$

0

D 6.0 Ω

0