AQA - Electric fields - A2 Physics P2

1. June/2021/Paper_7408_2/No.14

The diagram shows a particle with charge +Q and a particle with charge -Q separated by a distance d.

The particles exert a force F on each other.

An additional charge of $\pm 2Q$ is then given to each particle and their separation is increased to 2d.

What is the force that now acts between the particles?

- **A** an attractive force of $\frac{9}{2}F$
- **B** an attractive force of $\frac{9}{4}F$
- 0
- ${\bf C}$ a repulsive force of $\frac{3}{2}F$
- 0
- **D** a repulsive force of $\frac{3}{4}F$
- 0

2. June/2021/Paper_7408_2/No.15

Two protons are separated by distance r.

The electrostatic force between the two protons is \mathbf{X} times the gravitational force between them.

What is the best estimate for X?

[1 mark]

A 10^{20}

0

B 10^{28}

0

 $C 10^{36}$

0

 $D 10^{42}$

0

3. June/2021/Paper_7408_2/No.17

Two charged particles ${\bf P}$ and ${\bf Q}$ are separated by a distance of $120~{\rm mm}.$

X is a point on the line between P and Q where the electric potential is zero.

What is the distance from P to X?

- **A** 40 mm
- 0
- **B** 48 mm
- 0
- **C** 60 mm
- 0
- **D** 72 mm
- 0

4. June/2021/Paper_7408_2/No.18

An isolated spherical conductor is charged.

The conductor has a radius R and an electric potential V. The electric field strength at its surface is E.

Point **T** is a distance 2R from the surface.

What are the electric field strength and electric potential at T?

	Electric field strength	Electric potential	
Α	$\frac{E}{2}$	$\frac{V}{4}$	0
В	$\frac{E}{3}$	<u>V</u> 9	0
С	$\frac{E}{4}$	$\frac{V}{2}$	0
D	$\frac{E}{9}$	$\frac{V}{3}$	0

5. June/2021/Paper_7408_2/No.19

O is the centre of a negatively charged sphere.

K and **L** are two points at a distance r_1 from **O**. **M** and **N** are two points at a distance r_2 from **O**.

Which statement is true?

- [1 mark]
- A The work done moving an electron from **M** to **K** is the same as that done moving an electron from **K** to **L**.
- 0
- B The work done moving a positron from **K** to **M** is the same as that done moving an electron from **K** to **M**.
- 0

C No work is done moving an electron from M to N.

0

D No work is done moving a positron from **L** to **N**.

0

6. June/2020/Paper_7408_2/No.14

Two fixed charges of magnitude +Q and +3Q repel each other with a force F. An additional charge of -2Q is given to each charge.

What are the magnitude and the direction of the force between the charges?

[1 mark]

_	Magnitude of force	Direction of force	
Α	$\frac{F}{3}$	repulsive	0
В	5 <i>F</i>	attractive	0
С	5F	repulsive	0
D	$\frac{F}{3}$	attractive	0

7. June/2020/Paper_7408_2/No.15

At a distance L from a fixed point charge, the electric field strength is E and the electric potential is V.

What are the electric field strength and the electric potential at a distance 3L from the charge?

	Electric field strength	Electric potential	
Α	$\frac{E}{3}$	$\frac{V}{9}$	0
В	$\frac{E}{3}$	$\frac{V}{3}$	0
С	<u>E</u> 9	$\frac{V}{3}$	0
D	$\frac{E}{9}$	$\frac{V}{9}$	0

8. June/2020/Paper_7408_2/No.16

Which diagram shows lines of equipotential in steps of equal potential difference near an isolated point charge?

[1 mark]

Α

С

В

D

Α Ο

В

C o

D 0

9. June/2020/Paper_7408_2/No.17

A positive charge of $2.0 \times 10^{-4}~\rm C$ is placed in an electric field at a point where the potential is $+500~\rm V$.

What is the potential energy of the system?

[1 mark]

A $1.0 \times 10^{-1} \, J$

0

 $\text{B} \ 1.0 \times 10^{-1} \ \mathrm{J} \ \mathrm{C}^{-1}$

0

 ${\hbox{\bf C}} \ 4.0 \times 10^{-7} \, {\hbox{\rm J}}$

0

D $4.0 \times 10^{-7} \,\mathrm{J}\,\mathrm{C}^{-1}$

0

10. June/2020/Paper_7408_2/No.18

Two charges ${\bf P}$ and ${\bf Q}$ are 100~mm apart.

 ${f X}$ is a point on the line between ${f P}$ and ${f Q}$ where the electric potential is 0~V.

What is the distance from P to X?

[1 mark]

A 33 mm

0

B 40 mm

0

C 60 mm

0

D 67 mm

0