AQA - Thermodynamics - A2 Chemistry P1

- 1. June/ 2021/Paper_1/No.7
 - 7 This question is about thermodynamics. Consider the reaction shown.

$$2\,\text{Al}_2\text{O}_3(s) + 3\,\text{C}(s) \to 4\,\text{Al}(s) + 3\,\text{CO}_2(g)$$

Table 7 shows some thermodynamic data.

Table 7

Substance	Al ₂ O ₃ (s)	Al(s)	C(s)	CO₂(g)
Δ _f H ^Θ / kJ mol ⁻¹	-1669	0	0	-394
S ⁶ / J K ⁻¹ mol ⁻¹	51	28	6	214

0 7.1	Explain why the standard entropy value for carbon dioxide is greater than that for carbon.			
	[1 mark]			
0 7.2	State the temperature at which the standard entropy of aluminium is 0 J K ⁻¹ mol ⁻¹ [1 mark]			

	colved namers so uk					
solvedpapers.co.uk						
0 7 . 3	Use the equation and the data in Table 7 to calculate the minimum temperat	ure,				
	in K, at which this reaction becomes feasible.	[7 marks]				
		[/ marks]				

Minimum temperature _____K