AQA - Rate equations - A2 Chemistry P2

1. June/ 2020/Paper_2/No.1

0 1 This question is about rates of reaction.

Phosphinate ions $(H_2PO_2^-)$ react with hydroxide ions to produce hydrogen gas as shown.

$$H_2PO_2^- + OH^- \rightarrow HPO_3^{2-} + H_2$$

A student completed an experiment to determine the initial rate of this reaction. The student used a solution containing phosphinate ions and measured the volume of hydrogen gas collected every 20 seconds at a constant temperature.

Figure 1 shows a graph of the student's results.

Figure 1

0 1. 1 Use the graph in **Figure 1** to determine the initial rate of reaction for this experiment. State its units. Show your working on the graph.

[3 marks]

Rate Units

0	1	2

Another student reacted different initial concentrations of phosphinate ions with an excess of hydroxide ions. The student measured the time (t) taken to collect 15 cm³ of hydrogen gas. Each experiment was carried out at the same temperature. **Table 1** shows the results.

Table 1

Initial [H ₂ PO ₂ -] / mol dm ⁻³	t/s
0.25	64
0.35	32
0.50	16
1.00	4

State the relationship between the initial concentration of phosphinate and time (t).

Deduce the order of the reaction with respect to phosphinate.

[2	m	а	r	k!	\$1
_		м			•

Relationship _		
Order		

O 1. 3 Complete the diagram in **Figure 2** to show how the hydrogen gas could be collected and measured in the experiments in Questions **01.1** and **01.2**.

[1 mark]

Figure 2

The rate equation for a different reaction is

$$rate = k [L] [M]^2$$

0 1 . 4 Deduce the overall effect on the rate of reaction when the concentrations of both L and M are halved.

[1 mark]

0 1 . 5	The rate of reaction is 0.0250 mol dm $^{-3}$ s $^{-1}$ when the concentration of $\bf L$ is 0.0155 mol dm $^{-3}$	
	Calculate the concentration of \boldsymbol{M} if the rate constant is 21.3 $\text{mol}^{-2}~\text{dm}^6~\text{s}^{-1}$	[3 marks]
	Concentration of M	_mol dm ⁻³
0 1.6	Define the term overall order of reaction.	[1 mark]

2. June/ 2019/Paper_2/No.4

0 4

Substances P and Q react in solution at a constant temperature.

The initial rate of reaction was studied in three experiments by measuring the change in concentration of P over the first five seconds of the reaction.

The data obtained are shown in Table 1.

Table 1

Evneriment	Time after	Concentration / mol dm ⁻³		
Experiment	mixing / s	Р	Q	
1	0	1.00 × 10 ⁻²	1.25 × 10 ⁻²	
1	5.0	0.92 × 10 ⁻²	not measured	
2	0	2.00 × 10 ⁻²	1.25 × 10 ⁻²	
	5.0	1.84 × 10 ⁻²	not measured	
3	0	0.50 × 10 ⁻²	2.50 × 10 ⁻²	
	5.0	0.34 × 10 ⁻²	not measured	

0 4 . 1 Complete **Table 2** to show the initial rate of reaction of **P** in each experiment.

[1 mark]

Table 2

Experiment	Initial rate / mol dm ⁻³ s ⁻¹
1	1.6 × 10 ⁻⁴
2	
3	

0 4 . 2	Determine the order of reaction with respect to Q .	on with respect to P and the o	order of reaction [2 marks]
		Order with respect to P _ Order with respect to Q	
0 4 . 3	A reaction between substance second order with respect to State a given temperature, the in when the initial concentration the initial concentration of State and State a value for the rate Give the units for k	es R and S was second orde S . itial rate of reaction was 1.20 of R was 1.00 × 10 ⁻² mol dn vas 2.45 × 10 ⁻² mol dm ⁻³	0 × 10 ⁻³ mol dm ⁻³ s ⁻¹ n ⁻³ and
	k	Units	

3.	June/	2021/	'Paper_	_2/	Νo.	10
----	-------	-------	---------	-----	-----	----

1 0

This question is about rates of reaction. lodine and propanone react together in an acid-catalysed reaction

$$CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + HI(aq)$$

A student completed a series of experiments to determine the order of reaction with respect to iodine.

Method

- Transfer 25 cm³ of 1.0 mol dm⁻³ propanone solution into a conical flask.
- Add 10 cm³ of 1.0 mol dm⁻³ HCl(aq)
- Add 25 cm³ of 5.0×10^{-3} mol dm⁻³ $I_2(aq)$ and start a timer.
- At intervals of 1 minute, remove a 1.0 cm³ sample of the mixture and add each sample to a separate beaker containing an excess of NaHCO₃(aq)
- Titrate the contents of each beaker with a standard solution of sodium thiosulfate and record the volume of sodium thiosulfate used.

1 0.1	Suggest why the 1.0 cm ³ portions of the reaction mixture are added to an excess of NaHCO ₃ solution.
	[2 marks]
1 0 . 2	Suggest why the order of this reaction with respect to propanone can be ignored in
	this experiment. [2 marks]

The volume of sodium thiosulfate solution used in each titration is proportional to the concentration of iodine in each beaker.

Table 5 shows the results of the experiment.

Table 5

Time / minutes	Volume of sodium thiosulfate solution / cm ³
1	41
2	35
3	24
4	22
5	16
6	10

1 0 . 3 Use the results in **Table 5** to draw a graph of volume of sodium thiosulfate solution against time.

Draw a line of best fit.

[3 marks]

Volume of sodium thiosulfate solution / cm³

Time / minutes

1 0 . 4	Explain how the graph shows that the reaction is zero-order with respect to iodine in the reaction between propanone and iodine.
	[2 marks]

1 0. 5 The Arrhenius equation can be written as

$$\ln k = \frac{-E_a}{RT} + \ln A$$

Figure 8 shows a graph of $\ln k$ against $\frac{1}{T}$ for the reaction

$$2\,HI(g) \to H_2(g) + I_2(g)$$

Figure 8

$$\frac{1}{T}$$
 / K⁻¹

Use **Figure 8** to calculate a value for the activation energy (E_a) , in kJ mol⁻¹, for this reaction.

The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[3 marks

E a	kJ mol⁻¹
------------	----------