AQA - Polymers - A2 Chemistry P3

D Terylene

1.	June/ 2020/Paper_3/No.29 Which forms a polymer with ClOC(CH ₂) ₈ COCl?	[1 mark]
	A NH ₂ CH ₂ CH ₂ NH ₂	0
	B (CH ₃ CO) ₂ O	0
	C CH ₃ CH ₂ CONH ₂	0
	D NH ₂ CH ₂ COOH	0
2.	June/ 2019/Paper_3/No.28 Which polymer has hydrogen bonding between its chains?	[1 mark]
	A Kevlar	0
	B Polythene	0
	C PVC	0

3.	June/2021/Pap	per_3/No.1	
	0 1	This question is about ethanedioic acid (HOOCCOOH) and the ethanedioate ion (-OOCCOO-).	
	0 1.1	Ethanedioic acid reacts with propane-1,3-diol (HOCH ₂ CH ₂ CH ₂ OH) to form a part of the second sec	oolyester.
		Draw the repeating unit of this polyester.	2 marks]
	0 1.2	Explain why polyesters are biodegradable but polyalkenes are not biodegrada	able. 2 marks]

0 1 . 3

Sodium ethanedioate is used to find the concentration of solutions of potassium manganate (VII) by titration. The equation for this reaction is

$$2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ C}_2 \text{O}_4^{2-} \rightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2 \text{O} + 10 \text{ CO}_2$$

A standard solution is made by dissolving 162 mg of Na₂C₂O₄ (M_r = 134.0) in water and making up to 250 cm³ in a volumetric flask.

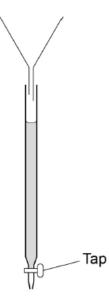
25.0 cm³ of this solution and an excess of sulfuric acid are added to a conical flask. The mixture is warmed and titrated with potassium manganate(VII) solution. The titration is repeated until concordant results are obtained.

The mean titre is 23.85 cm³

Calculate the concentration, in mol dm⁻³, of the potassium manganate(VII) solution. [4 marks]

Concentration mol dm⁻³

solvedpapers.co.uk Figure 1 shows the 25.0 cm³ pipette used to measure the sodium ethanedioate solution. Figure 1 Graduation mark On Figure 1, draw the meniscus of the solution when the pipette is ready to transfer 25.0 cm³ of the sodium ethanedioate solution. [1 mark] 0 | 1 |. Potassium manganate(VII) is oxidising and harmful. Sodium ethanedioate is toxic. Suggest safety precautions, other than eye protection, that should be taken when: filling the burette with potassium manganate(VII) solution • dissolving the solid sodium ethanedioate in water. [2 marks] Filling the burette Dissolving the solid _____


State the colour change seen at the end point of each titration.

[1 mark]

0 1 .

0 1. 7 Figure 2 shows the burette containing potassium manganate(VII) solution.

Figure 2

Give two practical steps needed before recording the initial burette reading.

[2 marks]

1_____

0 1.8	When $Na_2C_2O_4(aq)$ is added to a solution containing $[Fe(H_2O)_6]^{3+}$ ions, a reaction occurs in which all six water ligands are replaced by ethanedioate ions.		
	 Explain why the replacement of the water ligands by ethanedioate ions is favourable. In your answer refer to: the enthalpy and entropy changes for the reaction how the enthalpy and entropy changes influence the free-energy change for the reaction. 		
	[6 marks]		

9	solvedpapers.co.uk

4	June/20	21/Paner	3/No	2:

B poly(amide)

C poly(ester)

D protein

4.	June/2021/Paper_3/No.23		
	Which compound has <i>E–Z</i> isomers?		[1 mark]
	A CH ₂ =CHBr	0	
	B CH ₂ =CBr ₂	0	
	C CHBr=CHBr	0	
	D CBr ₂ =CHBr	0	
5.	June/2021/Paper_3/No.24 Which polymer has hydrogen bonding between the polymer chains?		[1 mark]
	A Kevlar	0	
	B PVC	0	
	C poly(phenylethene)	0	
	D Terylene	0	
5.	June/2021/Paper_3/No.34 Which type of polymer is not hydrolysed by heating with concentrate aqueous sodium hydroxide?	d	[1 mark]
	A poly(alkene)	0	