AQA – Oxidation, reduction and redox equations – AS Chemistry P1

1. June/ 2020/Paper 1/No.13

NO₂⁻ ions can be reduced in acidic solution to NO How many electrons are gained when each NO₂⁻ ion is reduced?

[1 mark]

2. June/ 2020/Paper_1/No.21

Which compound contains chlorine in an oxidation state of +1?

[1 mark]

3. June/ 2020/Paper_1/No.22

Which equation shows a redox reaction that does not occur?

[1 mark]

A
$$Br_2(aq) + 2KI(aq) \rightarrow I_2(aq) + 2KBr(aq)$$

$$\textbf{B} \ \mathsf{Cl}_2(g) + 2\,\mathsf{KI}(\mathsf{aq}) \to \mathsf{I}_2(\mathsf{aq}) + 2\,\mathsf{KCl}(\mathsf{aq})$$

C
$$Cl_2(g) + 2KBr(aq) \rightarrow Br_2(aq) + 2KCl(aq)$$

$$\textbf{D} \hspace{0.1in} I_2(aq) + 2 \hspace{0.1in} KBr(aq) \rightarrow Br_2(aq) + 2 \hspace{0.1in} KI(aq)$$

		301VCapapci 3:00:ak	
4.	June/ 2019/Pap	per_1/No.3(3.4-3.7)	
	0 3 . 4	Deduce the oxidation state of chromium in the $\operatorname{Cr_2O_7}^{2-}$ ion.	[1 mark]
	0 3.5	lodide ions can be oxidised to iodine using $\operatorname{Cr_2O_7}^{2-}$ ions.	
		Deduce a half-equation to show the oxidation of iodide ions to iodine.	
		State symbols are not required.	
			[1 mark]
	0 3.6	Deduce a half-equation for the conversion in acidic solution of $\text{Cr}_2\text{O}_7^{2-}$ ions to Cr^{3^+} ions.	
		State symbols are not required.	[1 mark]
	0 3.7	Use your answers from questions 03.5 and 03.6 to deduce the overall redox of for the reaction between iodide ions and acidified $\text{Cr}_2\text{O}_7^{2-}$ ions.	equation
		State symbols are not required.	
			[1 mark]

5. June/ 2020/Paper_1/No.15

Which equation does not represent a redox reaction?

[1 mark]

A Mg + $2HCl \rightarrow MgCl_2 + H_2$

0

 $\textbf{B} \ \text{CH}_4 \ \textbf{+} \ 2 \, \text{O}_2 \rightarrow \ \text{CO}_2 \ \textbf{+} \ 2 \, \text{H}_2 \text{O}$

0

 $\textbf{C} \ \ \text{Fe} \ + \ \ \text{CuSO}_4 \ \rightarrow \ \ \text{FeSO}_4 \ \ + \ \ \text{Cu}$

0

 $\textbf{D} \ \text{CuO} \ + \ 2\text{HCl} \ \rightarrow \ \text{CuCl}_2 \ + \ \text{H}_2\text{O}$

0

6. June/ 2021/Paper_1/No.16

Which compound contains a chlorine atom with an oxidation state of +4?

[1 mark]

A KClO₄

0

B CCl₄

0

C ClO₂

0

D ClO₂F

0

7. June/ 2021/Paper_1/No.19

Which pair of solutions, when mixed, reacts to form a dark brown solution?

[1 mark]

A NaF(aq) + Cl₂(aq)

B NaCl(aq) + Br₂(aq)

C NaBr(aq) + Cl₂(aq)

0

D $Nal(aq) + Br_2(aq)$

0

June/ 2021/Pa	per_1/No.3	
0 3	This question is about redox reactions.	
0 3.1	State, in terms of electrons, the meaning of the term oxidising agent.	[1 mark]
	On O 2- and avaiding CO 2- in a sidily and distance to forms On2+ and CO 2-	
0 3 . 2	$Cr_2O_7^{2-}$ can oxidise SO_3^{2-} in acidic conditions to form Cr^{3+} and SO_4^{2-} Deduce a half-equation for the oxidation of SO_3^{2-} to SO_4^{2-}	
	Deduce a fiall-equation for the oxidation of 303° to 304°	
	Deduce a half-equation for the reduction of Cr ₂ O ₇ ²⁻ to Cr ³⁺	
	Deduce the overall equation for the oxidation of SO_3^{2-} by $Cr_2O_7^{2-}$	[3 marks]
	Half-equation for the oxidation of SO ₃ ²⁻ to SO ₄ ²⁻	
	Half-equation for the reduction of Cr ₂ O ₇ ²⁻ to Cr ³⁺	
	Train-equation for the reduction of Orgo/ to Or	
	Overall equation	