AQA – Oxidation, reduction and redox equations – A2 Chemistry P3

1.	June/ 2020/Pap	per_3/No.1
	0 1	This question is about emissions of oxides of nitrogen from petrol and diesel engines.
	0 1.1	Explain how oxides of nitrogen are formed in engines. [2 marks]
	0 1.2	State why it is desirable to decrease emissions of oxides of nitrogen from vehicles. [1 mark]
	0 1.3	Modern diesel vehicles use diesel exhaust fluids, such as AdBlue, to decrease emissions of oxides of nitrogen.
		AdBlue reacts with water in the hot exhaust gases to form ammonia. In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water.
		Give the oxidation state of nitrogen in each of NO_2 , NH_3 and N_2
		Complete the equation for the reaction between NO ₂ and NH ₃ [2 marks]
		Oxidation state of nitrogen in
		NO ₂ NH ₃ N ₂
		Equation

solvedpapers.co.uk

0 1 . 4	Petrol vehicles have a catalytic converter which decreases emissions of oxide nitrogen. Platinum in the catalytic converter acts as a heterogeneous catalyst.	es of
	State the meaning of the term heterogeneous catalyst.	[2 marks]
0 1.5	Some carbon particulates are also formed in both diesel and petrol vehicles.	
	Explain why carbon particulates are formed.	[1 mark]

2. June/ 2020/Paper_3/No.11

In which conversion is the metal reduced?

[1 mark]

 $A Cr_2O_7^{2-} \rightarrow CrO_4^{2-}$

0

 $\textbf{B} \ \mathsf{MnO_4^{2-}} \ \to \mathsf{MnO_4^{-}}$

0

 $\textbf{C} \quad \text{TiO}_2 \quad \rightarrow \text{TiO}_3{}^{2-}$

0

 $D VO_3^- \rightarrow VO^{2+}$

0

3. June/ 2020/Paper_3/No.16

Which shows the major product(s) formed when chlorine reacts with cold, dilute, aqueous sodium hydroxide?

[1 mark]

A NaCl only

0

B NaClO only

0

C NaCl and NaClO

0

D NaCl and NaClO₃

0

4. June/ 2020/Paper_3/No.31

What is the minimum volume, in cm³, of 0.02 mol dm⁻³ KMnO₄ solution needed to oxidise 0.01 mol of VO²⁺?

$$5\,\text{VO}^{2^+}$$
 + MnO_4^- + H_2O \to $5\,\text{VO}_2^+$ + Mn^{2^+} + $2\,H^+$

[1 mark]

A 10

0

B 50

C 100

0

D 200

0

5. June/ 2019/Paper_3/No.15

	What is the correct observation when barium metal is added	d to an excess of water? [1 mark]
	A Forms a colourless solution only	0
	B Forms a colourless solution and effervesces	0
	C Forms a white precipitate only	0
	D Forms a white precipitate and effervesces	0
6.	June/ 2019/Paper_3/No.16 An aqueous solution of a salt gives a white precipitate when aqueous silver nitrate and when mixed with dilute sulfuric ac	
	Which could be the formula of the salt?	[1 mark]
	A BaCl ₂	0
	B (NH ₄) ₂ SO ₄	0
	c KCl	0
	D Sr(NO ₂) ₂	0

7. June/2021/Paper_3/No.1(1.3-1.8)

0 1 . 3 Sodium ethanedioate is used to find the concentration of solutions of potassium manganate(VII) by titration. The equation for this reaction is

$$2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ C}_2 \text{O}_4^{2-} \rightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2 \text{O} + 10 \text{ CO}_2$$

A standard solution is made by dissolving 162 mg of $Na_2C_2O_4$ (M_r = 134.0) in water and making up to 250 cm³ in a volumetric flask.

25.0 cm³ of this solution and an excess of sulfuric acid are added to a conical flask.

The mixture is warmed and titrated with potassium manganate(VII) solution.

The titration is repeated until concordant results are obtained.

The mean titre is 23.85 cm³

Calculate the concentration, in mol dm⁻³, of the potassium manganate(VII) solution.

[4 marks]

solvedpapers.co.uk Figure 1 shows the 25.0 cm³ pipette used to measure the sodium ethanedioate solution. Figure 1 Graduation mark On Figure 1, draw the meniscus of the solution when the pipette is ready to transfer 25.0 cm³ of the sodium ethanedioate solution. [1 mark] 0 1 Potassium manganate(VII) is oxidising and harmful. Sodium ethanedioate is toxic. Suggest safety precautions, other than eye protection, that should be taken when: • filling the burette with potassium manganate(VII) solution · dissolving the solid sodium ethanedioate in water. [2 marks] Filling the burette

Dissolving the solid

[1 mark]

State the colour change seen at the end point of each titration.

0 1.

0 1.8	When $Na_2C_2O_4(aq)$ is added to a solution containing $[Fe(H_2O)_6]^{3+}$ ions, a reaction occurs in which all six water ligands are replaced by ethanedioate ions.
	Explain why the replacement of the water ligands by ethanedioate ions is favourable. In your answer refer to: • the enthalpy and entropy changes for the reaction • how the enthalpy and entropy changes influence the free-energy change for the reaction.
	[6 marks]

	solvedpapers.co.uk
8.	June/2021/Paper_3/No.7
	Which does not involve the absorption of ultraviolet radiation or visible light? [1 mark]
	A. The blue engagement of conner(II) sulfets colution in devilight
	A The blue appearance of copper(II) sulfate solution in daylight.
	B The breakdown of ozone in the upper atmosphere.
	C The ionisation of a molecule in a mass spectrometer.
	D The reaction between chlorine and methane at room temperature.