AQA - Nuclear Magnetic resonance spectroscopy - A2 Chemistry P3

1. June/2021/Paper_3/No.2

0 2 The protein fibroin can be broken down into amino acids using an enzyme.

0 2. 1 A student uses thin-layer chromatography (TLC) to identify these amino acids.

The student identifies two of the amino acids as alanine and serine.

Use **Figure 3** to calculate the R_f value of the unknown amino acid. Show your working.

Use your R_f value and Table 1 to identify the unknown amino acid.

[2 marks]

Figure 3

Solvent front
Alanine
Unknown amino acid
Serine
Starting line

Table 1

Amino acid	R _f value	
tyrosine	0.25	
glycine	0.34	
valine	0.64	
leucine	0.73	

R_f value _____

Identity _____

0 2 . 2	The amino acids cannot be seen as they move during the experiment.	
	State how the amino acids can be made visible at the end of the experiment.	[1 mark]
0 2.3	State why each amino acid has a different $R_{\mbox{\scriptsize f}}$ value.	[1 mark]
June/2021/Pap	er_3/No.11	

[1 mark]

A Its ¹H NMR spectrum has 3 peaks with an integration ratio of 2:3:3

2.

compound is

B Its ¹³C NMR spectrum has 3 peaks.

C Its infrared spectrum has an absorption at 1735 cm⁻¹

D It has 36.36% by mass of oxygen and 9.09% by mass of hydrogen.