AQA - Nuclear Magnetic resonance spectroscopy - A2 Chemistry P3 1. June/2021/Paper_3/No.2 0 2 The protein fibroin can be broken down into amino acids using an enzyme. 0 2. 1 A student uses thin-layer chromatography (TLC) to identify these amino acids. The student identifies two of the amino acids as alanine and serine. Use **Figure 3** to calculate the R_f value of the unknown amino acid. Show your working. Use your R_f value and Table 1 to identify the unknown amino acid. [2 marks] Figure 3 Solvent front Alanine Unknown amino acid Serine Starting line Table 1 | Amino acid | R _f value | | |------------|----------------------|--| | tyrosine | 0.25 | | | glycine | 0.34 | | | valine | 0.64 | | | leucine | 0.73 | | R_f value _____ Identity _____ | 0 2 . 2 | The amino acids cannot be seen as they move during the experiment. | | |---------------|---|----------| | | State how the amino acids can be made visible at the end of the experiment. | [1 mark] | | | | | | 0 2.3 | State why each amino acid has a different $R_{\mbox{\scriptsize f}}$ value. | [1 mark] | | | | | | June/2021/Pap | er_3/No.11 | | [1 mark] A Its ¹H NMR spectrum has 3 peaks with an integration ratio of 2:3:3 2. compound is **B** Its ¹³C NMR spectrum has 3 peaks. C Its infrared spectrum has an absorption at 1735 cm⁻¹ **D** It has 36.36% by mass of oxygen and 9.09% by mass of hydrogen.