AQA - Nuclear Magnetic resonance spectroscopy - A2 Chemistry P2

June/ 2020/Pap	er_2/No./
0 7	This question is about NMR spectroscopy.
0 7.1	A compound is usually mixed with $Si(CH_3)_4$ and either CCl_4 or $CDCl_3$ before recording the compound's 1H NMR spectrum.
	State why $Si(CH_3)_4$, CCl_4 and $CDCl_3$ are used in 1H NMR spectroscopy.
	Explain how their properties make them suitable for use in ¹ H NMR spectroscopy. [6 marks]

solvedpapers.co.uk

0 7.2	Deduce the splitting pattern for each of the peaks given by the H atoms lab x , y and z in the 1 H NMR spectrum of the compound shown.	elled
	x y z CH ₃ CHClCOCH(CH ₃) ₂	[3 marks]
	<i>y</i>	•
	z	
0 7.3	Suggest why it is difficult to use Table B in the Data Booklet to predict the chemical shift (δ value) for the peak given by the H atom labelled ${\it y}$.	[1 mark]
0 7.4	Two isomers of CH ₃ CHClCOCH(CH ₃) ₂ each have two singlet peaks only in ¹ H NMR spectra. In both spectra the integration ratio for the two peaks is 2:9	their
	Deduce the structures of these two isomers.	[2 marks]
	Isomer 1	
	Isomer 2	

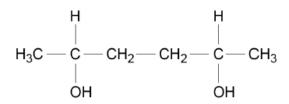
solvedpapers.co.uk

2. June/ 2019/Paper_2/No.6 (6.2),(6.)

O 6 • 2 Compounds A and B both have the molecular formula C₄H₈Br₂
A has a singlet, a triplet and a quartet in its ¹H NMR spectrum.
B has only two singlets in its ¹H NMR spectrum.

Draw a structure for each of A and B.

[2 marks]


A B

solvedpapers.co.uk

0 6 . 3	Compounds $\bf C$ and $\bf D$ both have the molecular formula $C_6H_3Br_3$ $\bf C$ has two peaks in its ^{13}C NMR spectrum. $\bf D$ has four peaks in its ^{13}C NMR spectrum.		
	Draw a structure for each of C and D		[2 marks]
	С	D	

June/ 2019/Paper_2/No.10 (10.3-10

1 0 . 3 Compounds with molecular formula C₆H₁₄O₂ also have a relative molecular mass of 118 to the nearest whole number. These include the diol shown.

Deduce the number of peaks in the ¹H NMR spectrum of this diol.

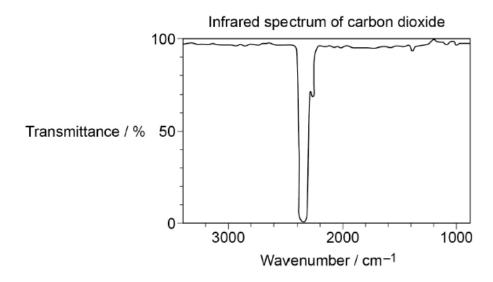
[1 mark]

 $oxed{1 \quad 0}$. $oxed{4}$ Draw the structure of a different diol also with molecular formula $C_6H_{14}O_2$ that has a 1H NMR spectrum that consists of two singlet peaks.

[1 mark]

 $oxed{1\ 0}$. $oxed{5}$ The dicarboxylic acid in question 10.1 and the isomers of $C_6H_{14}O_2$ in Questions 10.3 and 10.4 all have a relative molecular mass of 118

State why the dicarboxylic acid can be distinguished from the two diols by high resolution mass spectrometry using electrospray ionisation.


[1 mark]

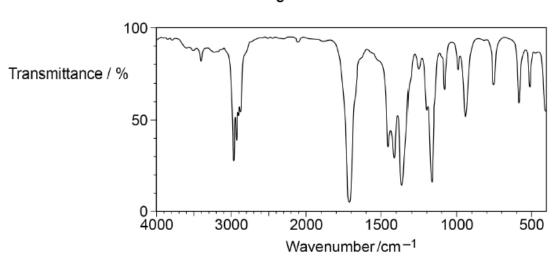
4. June/ 2019/Paper_2/No.11 (11.5)

1 1 5 Combustion of biodiesel produces greenhouse gases such as carbon dioxide that cause global warming.

Part of the infrared spectrum of carbon dioxide is shown in Figure 3.

Figure 3

State how the infrared spectrum of carbon dioxide in **Figure 3** is **not** what you might predict from the data provided in **Table A** in the Data Booklet.


[1 mark]

5. June/2021/Paper_2/No.7

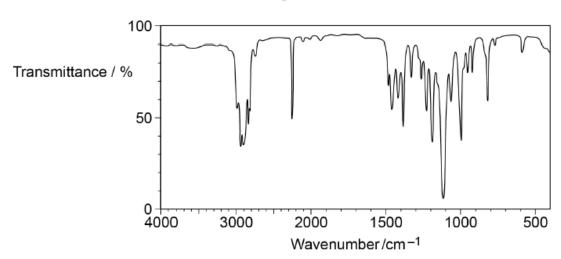
0 7 This question is about spectroscopy.

0 7. 1 Compound K has molecular formula C₄H₈O Figure 5 shows the infrared spectrum of K.

Figure 5

Which functional group does K contain?

Tick (✓) one box.


[1 mark]

Functional Group				
alcohol	alkene	amine	carbonyl	nitrile

0 7 . 2

Compound L has molecular formula C_4H_7NO Figure 6 shows the infrared spectrum of L.

Figure 6

 ${f L}$ reacts with ${f H}_2$ in the presence of a nickel catalyst to give compound ${f M}$.

Suggest three ways in which the infrared spectrum of ${\bf M}$ is different from the infrared spectrum of ${\bf L}$.

[3 marks]

1			
2			
3			

0 7. 3 Figure 7 shows the ¹H NMR spectrum of **Q**, C₃H₇ClO

Figure 7

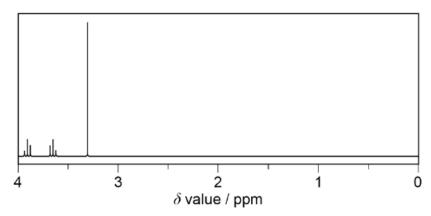


Table 4 shows the chemical shifts (δ values) and integration values for each peak.

Table 4

δ value / ppm	3.95	3.65	3.35
Integration value	0.6	0.6	0.9

Deduce the structure of Q.

Explain your answer.

[5 marks]