AQA - Halogenoalkanes - AS Chemistry P2

- 1. June/ 2019/Paper_2/No.2
 - 0 2 Bromoethane reacts with potassium cyanide to form compound **D**.

$$CH_3CH_2Br + KCN \rightarrow CH_3CH_2CN + KBr$$
Compound **D**

0 2 . 1 Outline the mechanism for this reaction.

[2 marks]

0 2 . 2 Give the IUPAC name of D.

[1 mark]

0 2 · 3 Calculate the percentage atom economy for the formation of **D** in this reaction.

Give your answer to the appropriate number of significant figures.

[2 marks]

% atom economy _____

2. June/ 2019/Paper_2/No.9

0 9

The compound 1,2-dichlorotetrafluoroethane is a CFC that was previously used in refrigerators as a coolant.

0 9 . 1

Molecules of 1,2-dichlorotetrafluoroethane can break down in the upper atmosphere to form chlorine radicals.

Give an equation to show the breakdown of one molecule of 1,2-dichlorotetrafluoroethane to form one chlorine radical and one other species.

[1 mark]

0 9 . 2

Give **two** equations to show how chlorine radicals catalyse the decomposition of ozone.

[2 marks]

0 9 . 3 Butane can be used as a replacement for CFCs in refrigerators.

During its use, the butane is repeatedly converted from liquid to gas and then back to liquid. Liquid butane expands as it turns into a gas.

- Calculate the volume, in cm³, of 38.8 g of butane gas at 272 K and 101 kPa (the gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$) ($M_{\rm f}$ of butane = 58.0)
- Calculate the volume, in cm³, of 38.8 g of liquid butane. (density of liquid butane = 0.60 g cm⁻³)
- Use your answers to calculate the factor by which butane expands in volume when it changes from a liquid to a gas.

Show your working.

[6 marks]

Volume of butane gas _____ cm³

Volume of liquid butane			cm³
Expansion factor			

3.	June/	2021,	/Paper_	_2/No.5
----	-------	-------	---------	---------

This question is about the synthesis of propylamine (CH₃CH₂CH₂NH₂) by the reaction of 1-iodopropane (CH₃CH₂CH₂I) with an excess of ammonia.

 $CH_3CH_2CH_2I + 2NH_3 \rightarrow CH_3CH_2CH_2NH_2 + NH_4I$

0 5. 1 Name and outline the mechanism for this reaction.

[5 marks]

Name of mechanism

Outline of mechanism

0 5.2	1-iodopropane is a liquid at room temperature.	
	Calculate the number of molecules in 5.0 cm ³ of 1-iodopropane ($M_{\rm r}$ = 169.9). Give your answer in standard form.	
	For 1-iodopropane, density = 1.75 g cm ⁻³	
	The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ [2 ma	rks]
	Number of molecules	
0 5.3	In an experiment, 10.3 g of 1-iodopropane (M_r = 169.9) are reacted with an excess ammonia. 2.3 g of propylamine (M_r = 59.0) are produced.	of
	Calculate the percentage yield in this experiment. [2 ma	rks]
	Percentage yield	