AQA - Energetics - A2 Chemistry P1

1. June/ 2020/Paper_1/No.1

0 1 This question is about enthalpy changes.

0 1 . 1 Figure 1 shows a Born-Haber cycle for the formation of strontium chloride, SrCl₂

Figure 1

Table 1 shows some thermodynamic data.

Table 1

	Enthalpy change / kJ mol ⁻¹
First ionisation energy of strontium	+548
Second ionisation energy of strontium	+1060
Enthalpy of atomisation of chlorine	+121
Enthalpy of atomisation of strontium	+164
Enthalpy of formation of strontium chloride	-828
Enthalpy of lattice formation of strontium chloride	-2112

Use the data in Table 1 to calculate a value for the electron affinity of chlorine.

[3 marks]

Ele	ectron affinity	kJ mol ⁻¹
0 1. 2 Draw a line from each substa	ance to the enthalpy of latti	ce formation of that substance. [1 mark]
Substance		Enthalpy of lattice formation / kJ mol ⁻¹
MgCl ₂		-2018
MgO		-2493
BaCl ₂		-3889

Table 2 shows the theoretical lattice enthalpy, based on a perfect ionic model, and an experimental value for the enthalpy of lattice formation of silver chloride.

Table 2

	Theoretical	Experimental
Enthalpy of lattice formation / kJ mol ⁻¹	– 770	- 905

0 1.3	State why there is a difference between	en the theoretic	cal and experin	nental values. [1 m a	ark]
0 1.4	Table 3 shows enthalpy of hydration		of some Group	o 1 elements.	
		Table 3			•
		Li⁺(g)	Na⁺(g)	K⁺(g)	
	Enthalpy of hydration / kJ mol ⁻¹	-519	-406	-322	

Explain why the enthalpy of hydration becomes less exothermic from Li*	to K ⁺ [2 marks]

0 1.5 Calcium bromide dissolves in water.

Table 4 shows some enthalpy data.

Table 4

	Enthalpy change / kJ mol ⁻¹
Enthalpy of solution of calcium bromide	–110
Enthalpy of lattice formation of calcium bromide	-2176
Enthalpy of hydration of calcium ions	-1650

Use the data in Table 4 to calculate the enthalpy of hydration, in $kJ \ mol^{-1}$, of bromide ions.

[3 marks]

Enthalpy of hydration of bromide ions_____ kJ mol⁻¹

2. June/ 2020/Paper_1/No.10

1 0

Methanol is formed when carbon dioxide and hydrogen react.

$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$

Table 5 contains enthalpy of formation and entropy data for these substances.

Table 5

	CO ₂ (g)	H₂(g)	CH₃OH(g)	H₂O(g)
$\Delta_f H$ / kJ mol ⁻¹	-394	0	-201	-242
S / J K ⁻¹ mol ⁻¹	214	131	238	189

1 0 . 1

Use the equation and the data in **Table 5** to calculate the Gibbs free-energy change (ΔG), in kJ mol⁻¹, for this reaction at 890 K

[6 marks]

Figure 4 shows how the Gibbs free-energy change varies with temperature in a different gas phase reaction.

The straight line graph for this gas phase reaction has been extrapolated to zero Kelvin.

Figure 4

1 0 . 2	Use the values of the intercept and gradient from the graph in Figure 4 to of the enthalpy change (ΔH) , in kJ mol ⁻¹ , and the entropy change (ΔS) , in J K	calculate ⁻¹ mol ⁻¹ , for
	this reaction.	[4 marks]
	Δ <i>H</i> k	J mol⁻¹
	ΔS	K ⁻¹ mol ⁻¹
1 0 . 3	State what Figure 4 shows about the feasibility of the reaction.	[1 mark]

3. June/ 2019/Paper_1/No.1

0 1

Figure 1 shows an incomplete Born–Haber cycle for the formation of caesium iodide. The diagram is not to scale.

Figure 1

Table 1 gives values of some standard enthalpy changes.

Table 1

Name of enthalpy change	ΔH° / kJ mol ⁻¹
Enthalpy of atomisation of caesium	+79
First ionisation energy of caesium	+376
Electron affinity of iodine	-314
Enthalpy of lattice formation of caesium iodide	- 585
Enthalpy of formation of caesium iodide	– 337

0 1 Complete Figure 1 by writing the formulas, including state symbols, of the appropriate species on each of the two blank lines.

[2 marks]

0 1 . 2 Use **Figure 1** and the data in **Table 1** to calculate the standard enthalpy of atomisation of iodine.

[2 marks]

The enthalpy of lattice formation for caesium iodide in **Table 1** is a value obtained by experiment.

The value obtained by calculation using the perfect ionic model is –582 kJ mol⁻¹

Deduce what these values indicate about the bonding in caesium iodide.

[1 mark]

0 1 . 4 Use data from Table 2 to show that this reaction is **not** feasible at 298 K

$$Csl(s) \to Cs(s) + \frac{1}{2}l_2(s)$$
 $\Delta H^{e} = +337 \text{ kJ mol}^{-1}$

Table 2

	CsI(s)	Cs(s)	I ₂ (s)
S ^e / J K ⁻¹ mol ⁻¹	130	82.8	117

[4 marks]

4. June/ 2021/Paper_1/No.1

- 0 1 This question is about enthalpy changes for calcium chloride and magnesium chloride.
- 0 1. 1 State the meaning of the term enthalpy change.

[1 mark]

Figure 1 shows an incomplete Born-Haber cycle for the formation of calcium chloride.

Figure 1

O 1. 2 Complete **Figure 1** by writing the formulas, including state symbols, of the appropriate species on each of the three blank lines.

[3 marks]

0 1 . 3 Table 1 shows some enthalpy data.

Table 1

	Enthalpy change / kJ mol ⁻¹
Enthalpy of formation of calcium chloride	- 795
Enthalpy of atomisation of calcium	+193
First ionisation energy of calcium	+590
Second ionisation energy of calcium	+1150
Enthalpy of atomisation of chlorine	+121
Electron affinity of chlorine	-364

Use **Figure 1** and the data in **Table 1** to calculate a value for the enthalpy of lattice dissociation of calcium chloride.

[2 marks]

Enthalpy of lattice dissociation _____kJ mol⁻¹

	Solveupapers.co.uk		
0 1.4	Magnesium chloride dissolves in water.		
	Give an equation, including state symbols, to represe the enthalpy of solution of magnesium chloride is me	-	curs when
0 1.5	Table 2 shows some enthalpy data. Table 2		
		Enthalpy change / kJ mol ⁻¹	
	Enthalpy of lattice dissociation of MgCl ₂	+2493	
	Enthalpy of hydration of Mg ²⁺ (g)	-1920	
	Enthalpy of hydration of Cl ⁻ (g)	-364	
	Use your answer to Question 01.4 and the data in Talenthalpy of solution of magnesium chloride.	isic 2 to calculate a ve	[2 marks
	Enthalpy of solution		_kJ mol ⁻¹
0 1.6	The enthalpy of hydration of Ca ²⁺ (g) is -1650 kJ mol	-1	
Suggest why this value is less exothermic than that of $Mg^{2+}(g)$		of Mg ²⁺ (g)	[2 marks