AQA – Electrode potentials and electrochemical cells – A2 Chemistry P3

1.

June/ 2020/Pap	per_3/No.6
0 6	Standard electrode potentials are measured by comparison with the standard hydrogen electrode.
0 6 . 1	State the substances and conditions needed in a standard hydrogen electrode. [3 marks]
	It is difficult to ensure consistency with the setup of a standard hydrogen electrode. A $Cu^{2+}(aq)/Cu(s)$ electrode (E^{e} = +0.34 V) can be used as a secondary standard.
	A student does an experiment to measure the standard electrode potential for the $TiO^{2+}(aq)/Ti(s)$ electrode using the $Cu^{2+}(aq)/Cu(s)$ electrode as a secondary standard.
	A suitable solution containing the acidified $TiO^{2+}(aq)$ ion is formed when titanium(IV) oxysulfate ($TiOSO_4$) is dissolved in 0.50 mol dm ⁻³ sulfuric acid to make 50 cm ³ of solution.
0 6.2	Describe an experiment the student does to show that the standard electrode potential for the TiO $^{2+}(aq)/Ti(s)$ electrode is -0.88 V
	The student is provided with: • the Cu ²⁺ (aq)/Cu(s) electrode set up ready to use • solid titanium(IV) oxysulfate (M _r = 159.9) • 0.50 mol dm ⁻³ sulfuric acid
	u.50 moi dm s suituric acid a strip of titanium
	laboratory apparatus and chemicals.
	Your answer should include details of: • how to prepare the solution of acidified TiO ²⁺ (aq) • how to connect the electrodes
	 measurements taken how the measurements should be used to calculate the standard electrode potential
	for the TiO ²⁺ (aq)/Ti(s) electrode.
	[6 marks]

solvedpapers.co.uk

solvedpapers.co.uk

solved	papers.c	o.uk
30.00	papers.c	O. a.v

0 6.3	Give the half-equation for the electrode reaction in the TiO ²⁺ (aq)/Ti(s) electrode in acidic conditions.		
	[1 mark	q	
		_	

0 6 . 4 Table 2 shows some electrode potential data.

Table 2

Electrode reaction	<i>E</i> ⊕ / V
$2 H^{\scriptscriptstyle +}(aq) + 2 e^- \rightarrow H_2(g)$	0.00
$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	+0.34
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \rightarrow NO(g) + 2 H_2O(l)$	+0.96

Use the data in **Table 2** to explain why copper does **not** react with most acids but does react with nitric acid.

Give an equation for the reaction between copper and nitric acid.

2. June/ 2019/Paper_3/No.3

Figure 1 represents the cell used to measure the standard electrode potential for the Fe³⁺/Fe²⁺ electrode.

Figure 1

0 3 . 1 Name the piece of apparatus labelled A.

[1 mark]

0 3 . 2 State the purpose of A.

[1 mark]

0 3 Name the substance used as electrode B in Figure 1.

[1 mark]

0 3 . 4 Complete **Table 1** to identify **C**, **D** and **E** from **Figure 1**. Include the essential conditions for each.

[4 marks]

Table 1

	Identity	Conditions
С		
D		
E		

0 3 . 5 The standard electrode potential, E° , for the Fe³⁺/Fe²⁺ electrode is +0.77 V

Give the ionic equation for the overall reaction in the cell in Figure 1.

State the change that needs to be made to the apparatus in **Figure 1** to allow the cell reaction to go to completion.

[2 marks]

Change

0 3 . 6 A student sets up a cell as shown in the cell representation.

$$Zn(s)|Zn^{2+}(aq)||Cu^{2+}(aq)|Cu(s)$$

The student measures the cell EMF, E_{cell} , with several different concentrations of Cu^{2+} ions and Zn^{2+} ions.

The results are shown in Table 2.

Table 2

Experiment	[Zn ²⁺] / mol dm ⁻³	[Cu ²⁺] / mol dm ⁻³	$\ln\left(\frac{[Zn^{2+}]}{[Cu^{2+}]}\right)$	E _{cell} / V
1	0.010	1.0	-4.61	1.16
2	0.10	1.0	-2.30	1.13
3	1.0	1.0	0.00	1.10
4	1.0	0.10		1.07
5	1.0	0.010	4.61	1.04

Complete Table 2 to show the value missing from experiment 4.

Plot a graph of E_{cell} against ln $([Zn^{2+}]/[Cu^{2+}])$ on the grid.

[3 marks]

$$\ln \left(\frac{[Zn^{2+}]}{[Cu^{2+}]} \right)$$

	solvedpapers.co.uk	
0 3.7	This equation shows how E_{cell} varies with concentration for this reaction.	
	$E_{\text{cell}} = (-4.3 \times 10^{-5} \times T) \ln \left(\frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]} \right) + E_{\text{cell}}^{\theta}$	
	This equation is in the form of the equation for a straight line, $y = mx + c$	
	Calculate the gradient of your plotted line on the graph in question 03.6 . You must show your working.	
	Use your gradient to calculate the temperature, T , at which the measurements of E_c were taken. (If you were unable to calculate a gradient you should use the value -0.016 \lor This is not the correct value.)	ell
	[3 marl	ks]
	GradientV	
	<i>T</i> K	
0 3.8	In experiment 2 in Table 2 the electrode potential of the Cu ²⁺ /Cu electrode is +0.33	V
	Use data from Table 2 in question 03.6 to calculate the electrode potential for the Zn^{2+}/Zn electrode in experiment 2.	
	Give one reason why your calculated value is different from the standard electrode potential for Zn^{2+}/Zn electrode. [2 mark	ks]
	Electrode potentialV	

Reason

3. June/ 2019/Paper_3/No.13

The E° values for two electrodes are shown.

$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s) E^{0} = -0.44 V$$

$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$
 E°= +0.34 V

What is the EMF of the cell $Fe(s)|Fe^{2+}(aq)||Cu^{2+}(aq)||Cu(s)$?

[1 mark]

A +0.78 V

0

B +0.10 V

0

C -0.10 V

0

D -0.78 V

0