AQA – Electrode potentials and electrochemical cells – A2 Chemistry P1

1.

June/ 2020/Pap	per_1/No.11	
1 1	This question is about a glucose-oxygen fuel cell.	
	When the cell operates, the glucose ($C_6H_{12}O_6$) molecules react with water at negative electrode to form carbon dioxide and hydrogen ions.	the
	Oxygen gas reacts with hydrogen ions to form water at the positive electrode).
1 1 . 1	Deduce the half-equation for the reaction at the negative electrode.	[1 mark
1 1.2	Deduce the half-equation for the reaction at the positive electrode.	[1 mark
11.3	Give the equation for the overall reaction that occurs in the Glucose–oxygen fuel cell.	
		[1 mark
11.4	The negative electrode is made of carbon and the positive electrode is made platinum.	of
	Give the conventional representation for the glucose-oxygen fuel cell.	[2 marks
1 1.5	State what must be done to maintain the EMF of this fuel cell when in use.	[1 mark

2. June/ 2021/Paper_1/No.8

0 8 This question is about electrode potentials and electrochemical cells.

0 8 . 1 State the meaning of the term electrochemical series.

[1 mark]

Table 8 shows some electrode potentials.

Table 8

	<i>E</i> ↔ / V
$[\text{Fe}(\text{H}_2\text{O})_6]^{2+}(\text{aq}) + 2\text{e}^- \rightarrow \text{Fe}(\text{s}) + 6\text{H}_2\text{O}(\text{I})$	-0.44
$H^{\scriptscriptstyle +}(aq) + e^{\scriptscriptstyle -} ightarrow rac{1}{2} H_2(g)$	0.00
$[\text{Co}(\text{NH}_3)_6]^{3^+}(\text{aq}) + \text{e}^- \ \to \ [\text{Co}(\text{NH}_3)_6]^{2^+}(\text{aq})$	+0.11
$[Fe(H_2O)_6]^{3+}(aq) + e^- \rightarrow [Fe(H_2O)_6]^{2+}(aq)$	+0.77
$VO_{2}^{+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow VO^{2+}(aq) + H_{2}O(I)$	+1.00
$[\text{Co}(\text{H}_2\text{O})_6]^{3^+}(\text{aq}) + \text{e}^- \ \to \ [\text{Co}(\text{H}_2\text{O})_6]^{2^+}(\text{aq})$	+1.81

0 8 . 2 State two conditions needed for the following half-cell to have E° = 0.00 V

$$H^{\scriptscriptstyle +}(aq)$$
 + $e^- \to \frac{1}{2} H_2(g)$

[1 mark]

0 8 . 3 Identify the weakest reducing agent in Table 8.

[1 mark]

solvedpapers.co.uk

0 8.4	Use half-equations from Table 8 to deduce an equation for the reduction of V form VO ²⁺ in aqueous solution by iron.	′O₂⁺ to
		[2 marks]
0 8 . 5	Use data from Table 8 to explain why $[Co(H_2O)_6]^{3+}(aq)$ will undergo a redox r with $[Fe(H_2O)_6]^{2+}(aq)$	reaction
	Give an equation for this reaction.	[2 marks]
	Explanation	
	Equation	
0 8 . 6	Suggest why the two cobalt(III) complex ions in Table 8 have different electropotentials.	ode [1 mark]

3. June/ 2021/Paper_1/No.9

0 9 This question is about the development of lithium cells.

The value of E° for lithium suggests that a lithium cell could have a large EMF.

Table 9 shows some electrode potential data.

Table 9

	<i>E</i> [⊕] / V
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04
$2 H_2O(I) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$	-0.83
$\frac{1}{2}I_2(s) + e^- \rightarrow I^-(aq)$	+0.54

0 9 . 1	Use data in Table 9 to explain why an aqueous electrolyte is not used for cell.	a lithium
		[2 marks]

0 9.2 In the 1970s lithium-iodine cells became a common power source for heart pacemakers. Lithium iodide is the final product of the cell reaction.

Use the data in Table 9 to calculate the cell EMF of a standard lithium-iodine cell.

[1 mark]

0 9 . 3 An EMF value for a commercial lithium-iodine cell is 2.80 V

Suggest why this value is different from the value calculated in Question 09.2.

[1 mark]

solvedpapers.co.uk

0 9.4	In some lithium cells, lithium perchlorate (LiClO $_4$) is used as the electrolyte.
	Deduce the oxidation state of chlorine in LiClO ₄ [1 mark]
0 9 . 5	In other lithium cells, lithium cobalt oxide electrodes and lithium electrodes are used. Give an equation for the reaction that occurs at the positive lithium cobalt oxide electrode. [1 mark]
0 9.6	Give an equation for the reaction that occurs at the negative lithium electrode. [1 mark]