AQA – Discrete random variable and expectation – AS Further Mathematics Statistics

1. June/2020/Paper_2/No.1

The discrete random variable *X* has the following probability distribution function.

$$P(X = x) = \begin{cases} 0.2 & x = 1 \\ 0.3 & x = 2 \\ 0.1 & x = 3, 4 \\ 0.25 & x = 5 \\ 0.05 & x = 6 \\ 0 & \text{otherwise} \end{cases}$$

Find the mode of X.

Circle your answer.

[1 mark]

0.1 0.25 2 3

2. June/2020/Paper_2/No.5

The discrete random variable X has the following probability distribution.

x	2	4	6	9
P(X = x)	0.2	0.6	0.1	0.1

(a)	Find $P(X \le 6)$	[1 mark]

(b) Let Y = 3X + 2

Show	that	Var	Y	= 32.49
CHOW	triat	vai		/ — 02.40

[5 marks]

(c)	The continuous	random	variable	T is	independent	of	Y
\ /							

Given that Var(T) = 5, find Var(T + Y)

[1 mark]

3. June/2019/Paper_2/No.1

The discrete random variable X has the following probability distribution function

$$P(X = x) = \begin{cases} \frac{5 - x}{10} & x = 1, 2, 3, 4 \\ 0 & \text{otherwise} \end{cases}$$

Find $P(X \ge 3)$

Circle your answer.

[1 mark]

0.1

0.15

0.2

0.3

4. June/2019/Paper_2/No.5

The discrete random variable X has the following probability distribution function

$$P(X = x) = \begin{cases} \frac{1}{n} & x = 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$$

(a) (i)	Prove that $E(X) =$	$=\frac{n+1}{2}$
(a) (i)	Prove that $E(X) =$	$=\frac{n+1}{2}$

2	[3 marks]

(a) (ii)	Prove that	Var(X) =	$\frac{n^2-1}{12}$
			14

 12	[4 marks]

	solvedpapers.co.uk
-	
-	
_	
_	
-	
_	
_	
_	
_	
_	
_	
_	
_	
c	tata tura conditiona undar urbiala a dispreta uniforma distribution con la usad ta mada
	State two conditions under which a discrete uniform distribution can be used to model ne score when a cubic dice is rolled.
	[2 marks]
-	
_	
_	
_	