AQA - Chemical equilibria, Le Chatelier's principle and Kc - A2 Chemistry P2

1. June/ 2020/Paper_2/No.9

0 9

A and B react together to form an equilibrium mixture.

$$A(aq) + 2B(aq) \Rightarrow C(aq)$$

An aqueous solution containing 0.25 mol of ${\bf A}$ is added to an aqueous solution containing 0.25 mol of ${\bf B}$.

When equilibrium is reached, the mixture contains 0.015 mol of C.

0 9. 1 Calculate the amount of **A** and the amount of **B**, in moles, in the equilibrium mixture. [2 marks]

Amount of A	 mol

Amount of B mol

0 9.2 At a different temperature, another equilibrium mixture contains 0.30 mol of **A**, 0.25 mol of **B** and 0.020 mol of **C** in 350 cm³ of solution.

Calculate the value of the equilibrium constant K_c

Deduce the units of K_c

[4 marks]

Kc ____

Units

solvedpapers.co.uk

When an excess of water is added to chloroethanal, an equilibrium mixture is formed.

$$ClCH_2CHO(aq) + H_2O(I) \rightleftharpoons ClCH_2CH(OH)_2(aq)$$

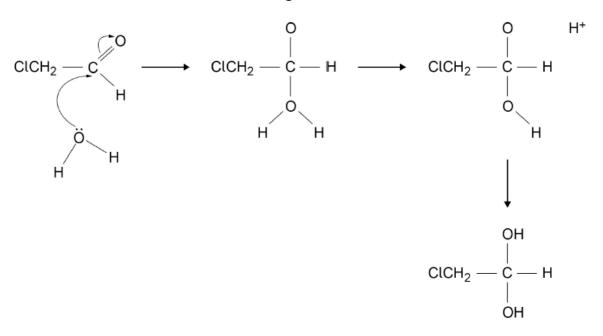
An expression for an equilibrium constant (K) for the reaction under these conditions is

$$K = \frac{[\text{ClCH}_2\text{CH(OH)}_2]}{[\text{ClCH}_2\text{CHO}]}$$

0 9 . 3	Suggest why an expression for <i>K</i> can be written without the concentration of wa		

0 9.4 Distilled water is added to 4.71 g of chloroethanal (M_r = 78.5) to make 50.0 cm³ of solution. The mixture is allowed to reach equilibrium.

The value of the equilibrium constant (K) is 37.0


Calculate the equilibrium concentration, in mol dm⁻³, of ClCH₂CH(OH)₂

[5 marks]

0 9 . 5

Figure 6 shows an incomplete nucleophilic addition mechanism for the reaction of water with chloroethanal.

Figure 6

Complete the mechanism in **Figure 6** by adding **two** curly arrows, all relevant charges and any lone pairs of electrons involved.

[3 marks]

[3 marks]

0 9 . 6

When an excess of water is added to ethanal a similar nucleophilic addition reaction occurs.

$$CH_3CHO(aq) + H_2O(I) \rightleftharpoons CH_3CH(OH)_2(aq)$$

Suggest why this reaction is slower than the reaction in Question 09.5.

2. June/ 2019/Paper_2/No.5

0 5

The rate constant, k, for a reaction varies with temperature as shown by the equation

$$k = Ae^{-E_aIRT}$$

For this reaction, at 25 °C, $k = 3.46 \times 10^{-8} \text{ s}^{-1}$ The activation energy $E_a = 96.2 \text{ kJ mol}^{-1}$ The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Calculate a value for the Arrhenius constant, $\mathsf{A},$ for this reaction. Give the units for $\mathsf{A}.$

[4 marks]

3. June/2021/Paper_2/No.5

0 5 This question is about equilibrium.

1 mol of a diester with molecular formula C₇H₁₂O₄ is added to 1 mol of water in the presence of a small amount of catalyst.

The mixture is left to reach equilibrium at a constant temperature.

$$C_7H_{12}O_4(I) + 2H_2O(I) \rightleftharpoons 2CH_3COOH(I) + HO(CH_2)_3OH(I)$$

At equilibrium, x mol of ethanoic acid are present in the mixture.

Complete **Table 2** by deducing the amounts, in terms of \mathcal{X} , of the diester, water and diol present in the equilibrium mixture.

[3 marks]

Table 2

Amount in the mixture / mol							
	Diester	Water	Acid	Diol			
At the start	1	1	0	0			
At equilibrium			x				

0 5 . 2 Deduce the structure of the diester in Question 05.1

[1 mark]

0 5 . 3

A new equilibrium mixture of the substances from Question **05.1** is prepared at a different temperature.

$$C_7H_{12}O_4(I) + 2H_2O(I) \rightleftharpoons 2CH_3COOH(I) + HO(CH_2)_3OH(I)$$

Table 3 shows the amount of each substance in this new equilibrium mixture.

Table 3

Amount in the mixture / mol						
	Diester	Water	Acid	Diol		
At equilibrium	0.971	To be calculated	0.452	0.273		

The value of the equilibrium constant, K_c is 0.161 at this temperature.

Calculate the amount of water, in mol, in this new equilibrium mixture. Show your working.

[3 marks]