AQA – Chemical equilibria, Le Chatelier's principle and Kc – A2 Chemistry P1

- 1. June/ 2020/Paper_1/No.6
 - 0 6 Methanol can be manufactured in a reversible reaction as shown.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H^{\circ} = -91 \text{ kJ mol}^{-1}$

Figure 3 shows how the partial pressures change with time at a constant temperature.

Partial pressure CH₃OH H₂ CO

Time

0 6. 1 Draw a cross (x) on the appropriate axis of **Figure 3** when the mixture reaches equilibrium.

[1 mark]

0 6.230 mol sample of carbon monoxide is mixed with hydrogen in a 1:2 mol ratio and allowed to reach equilibrium in a sealed flask at temperature *T*. At equilibrium the mixture contains 0.120 mol of carbon monoxide. The total pressure of this mixture is 1.04 × 10⁴ kPa

solvedpapers.co.uk

Calculate	the partial pressure, in kPa, of hydrogen in the equilibrium mixtu	re. [4 marks]
	Partial pressure of hydrogen	kPa
0 6.3	Give an expression for the equilibrium constant (K_p) for this reaction.	
	State the units.	[2 marks]
	$\mathcal{K}_{\mathtt{p}}$	
	Units	

solvedpapers.co.uk

0 6 . 4	Some more carbon monoxide is added to the mixture in Question 06.2 . The new mixture is allowed to reach equilibrium at temperature T .
	State the effect, if any, on the partial pressure of methanol and on the value of K_p [2 marks]
	Effect on partial pressure of methanol
	Effect on value of K _p
0 6 . 5	State the effect, if any, of the addition of a catalyst on the value of K_p for this equilibrium. Explain your answer.
	[2 marks]
	Effect on value of K _p
	Explanation

2. June/ 2019/Paper_1/No.7

0 7 Sulfur trioxide decomposes on heating to form an equilibrium mixture containing sulfur dioxide and oxygen.

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

0 7 . 1 A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given temperature.

The equilibrium mixture contained 6.08 g of sulfur dioxide.

Calculate the mass, in g, of oxygen gas in the equilibrium mixture.

[2 marks]

Mass		a

0 7.2

A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 $\mbox{\rm K}$

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

The amounts of each substance in the equilibrium mixture are shown in Table 4.

Table 4

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, $K_{\rm p}$ = 7.62 x 10⁵ Pa

Calculate the mole fraction of each substance at equilibrium. Give the expression for the equilibrium constant, K_p Calculate the total pressure, in Pa, of this equilibrium mixture.

[4 marks]

Mole fraction SO ₃	
Mole fraction SO ₂	
Mole fraction O ₂	

Kp

Total pressure Pa

0 7.3	For this reaction at 1050 K the equilibrium constant, $K_p = 7.62 \times 10^5$ Pa For this reaction at 500 K the equilibrium constant, $K_p = 3.94 \times 10^4$ Pa
	Explain how this information can be used to deduce that the forward reaction is endothermic.
	[2 marks]
0 7.4	Use data from Question 07.3 to calculate the value of $K_{\rm p}$, at 500 K, for the equilibrium represented by this equation. Deduce the units of $K_{\rm p}$
	$SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$
	[2 marks]
	\mathcal{K}_{p}
	Units

3.	June/ 2021/Pa	per_1/No.4	
	0 4	This question is about iron and its ions.	
	0 4.1	Discuss the role of iron as a heterogeneous catalyst in the Haber process.	
		$3 H_2 + N_2 \rightleftharpoons 2 NH_3$	
		Your answer should include:	
		the meaning of the term heterogeneous catalyst how iron acts as a heterogeneous catalyst	
		the factors that affect the efficiency and lifetime of the catalyst.	[6 marks]

solveapapers.co.uk

0 4 . 2

 Fe^{2+} ions catalyse the reaction between peroxodisulfate(VI) ions and iodide ions in aqueous solution.

$$S_2O_8^{2-}(aq) + 2I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(aq)$$

Explain why this reaction is slow before the catalyst is added. Give **two** equations to show how Fe²⁺ ions catalyse this reaction.

		[4 marks]
	Why reaction is slow before catalyst added	
	Equation 1	
	Equation 2	
0 4.3	Give a reason why Zn^{2+} ions do not catalyse the reaction in Question 04.2 .	
		[1 mark]

0 4 . 4

Iron reacts with dilute hydrochloric acid to form iron(II) chloride and hydrogen.

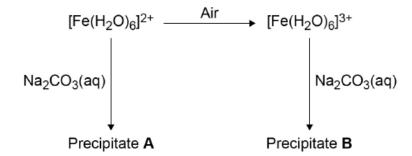
$$Fe(s) + 2 HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

A 0.998 g sample of pure iron is added to 30.0 cm³ of 1.00 mol dm⁻³ hydrochloric acid.

One of these reagents is in excess and the other reagent limits the amount of hydrogen produced in the reaction.

Calculate the maximum volume, in m^3 , of hydrogen gas produced at 30 $^{\circ}$ C and 100 kPa.

Give your answer to 3 significant figures.


In your answer you should identify the limiting reagent in the reaction.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[6 marks]

Figure 2 shows some reactions of iron ions in aqueous solution.

Figure 2

0 4.5 Identify A and state its colour.

[2 marks]

Identity _____

0 4 . 6 Give the formula of B and state its colour.

Give an ionic equation for the reaction of $[Fe(H_2O)_6]^{3+}$ with aqueous Na_2CO_3 to form **B**.

Colour

[3 marks]

Formula _____

Ionic equation

solvedpapers.co.uk

0 4 . 7	Explain why an aqueous solution containing $[Fe(H_2O)_6]^{3+}$ ions has a lower pH than an aqueous solution containing $[Fe(H_2O)_6]^{2+}$ ions.	
	[3 mar	rks]