AQA - Atomic structure - AS Chemistry P1

1.

June/ 2020/Pap	per_1/No.1
0 1	This question is about atomic structure.
0 1.1	There is a general trend for an increase in ionisation energy across Period 3. Give one example of an element that deviates from this trend.
	Explain why this deviation occurs. [3 marks]
	Element
	Explanation
0 1.2	Give an equation, including state symbols, to represent the process that occurs when the third ionisation energy of sodium is measured.
	[1 mark]

Figure 1 shows the successive ionisation energies of a Period 3 element, X.

Figure 1

Identify element X. Explain your choice.

[3 marks]

Element Explanation

2. June/ 2020/Paper_1/No.9

Which atom has the smallest number of neutrons?

[1 mark]

A 3H

0

B ⁴He

0

C 5He

0

D ⁴Li

0

3. June/ 2020/Paper_1/No.12

Which reaction has an enthalpy change equal to the standard enthalpy of formation of lithium fluoride?

[1 mark]

A Li(g) + $\frac{1}{2}$ F₂(g) \rightarrow LiF(s)

0

 $\textbf{B} \ Li^{\scriptscriptstyle +}(g) + F^{\scriptscriptstyle -}(g) \to LiF(s)$

0

 $\textbf{C} \hspace{0.2cm} \text{Li}^{\scriptscriptstyle +}(aq) + \text{F}^{\scriptscriptstyle -}(aq) \rightarrow \text{LiF}(s)$

0

D Li(s) + $\frac{1}{2}$ F₂(g) \rightarrow LiF(s)

0

4. June/ 2020/Paper_1/No.14

Which is the electron configuration of an atom with **only two** unpaired electrons?

[1 mark]

A $1s^2 2s^2 2p^3$

0

B 1s²2s²2p⁴

0

 $\hbox{\bf C} \ 1 \hbox{s}^2 2 \hbox{s}^2 2 \hbox{p}^6 3 \hbox{s}^2 3 \hbox{p}^5$

0

D 1s²2s²2p⁶3s²3p⁶4s¹3d⁵

0

5. June/ 2019/Paper_1/No.2

0 2	Time of flight (TOF) mass spectrometry is an important analytical technique.	
	A mixture of three compounds is analysed using a TOF mass spectrometer. The mixture is ionised using electrospray ionisation. The three compounds are known to have the molecular formulas: $\begin{array}{c} C_3H_5O_2N \\ C_3H_7O_3N \\ C_3H_7O_2NS \end{array}$	
0 2 . 1	Describe how the molecules are ionised using electrospray ionisation.	[3 marks
0 2.2	Give the formula of the ion that reaches the detector first in the TOF mass spectrometer.	[1 mark
0 2.3	A sample of germanium is analysed in a TOF mass spectrometer using electron impact ionisation. Give an equation, including state symbols, for the process that occurs during	the
	ionisation of a germanium atom.	[1 mark

solvedpapers.co.uk

0 2 . 4	In the TOF mass spectrometer, a germanium ion reaches the detector
	in 4.654 × 10 ⁻⁶ s
	The kinetic energy of this ion is 2.438×10^{-15} J
	The length of the flight tube is 96.00 cm

The kinetic energy of an ion is given by the equation $KE = \frac{1}{2} mv^2$

where

$$m = \text{mass / kg}$$

 $v = \text{speed / m s}^{-1}$

The Avogadro constant $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

Use this information to calculate the mass, in g, of one mole of these germanium ions. Use your answer to state the mass number of this germanium ion.

[5 marks]

Mass of one mole of germanium ions	g
Mass number of ion	

	SC	olvedpapers.co.uk		
June/ 2019/Pap	per_1/No.3(3.1-3.3)			
0 3	This question is about ch	romium and its com	pounds.	
0 3 . 1	Complete the full electron	n configuration of a	chromium atom.	[1 mark]
	1s ²			
0 3.2	An atom has 2 more profined atom has 2 more profined by the symbol, included the symbol, included the symbol.			
0 3.3	A sample of chromium contained and the sample of	•		
	Table 2			
	Mass number	52	53	54
	Abundance (%)	82.8	10.9	2.7
	Determine the percentage	e abundance of the	fourth isotone	

Determine the percentage abundance of the fourth isotope. Show by calculation that the mass number of this isotope is 50

[3 marks]

Percentage abundance _____

Calculation

_					
7.	lune	/ 2019	/Paper	1	/No 4

The first ionisation energie	s of the elements	in Period 2	change a	s the atomic	number
increases.					

xpiain the pattern in the first lonisation energies of the elements from	[6 marks]

solvedpapers.co.uk

8.

June/ 2019/Paper_1/No.17

	vvnich statement is not correct?	[1 mark]
	A Strontium has a lower first ionisation energy than calcium.	0
	B Strontium has a larger ionic radius than calcium.	0
	C Strontium reacts less vigorously with water than calcium.	0
	D Strontium hydroxide is more soluble in water than calcium hydroxide.	0
9.	June/ 2019/Paper_1/No.18 Which property of the Group 2 elements, Ca to Ba, increases w number?	rith increasing atomic [1 mark]
		[Timum]
	A Atomic Radius	0
	B Electronegativity	0
	C First ionisation energy	0
	D Melting Point	0
10.	. June/ 2019/Paper_1/No.19 What is the best oxidising agent?	[1 mark]
	A F ₂	0
	B F⁻	0
	C I ₂	0
	D -	0

11. June/ 2019/Paper_1/No.21

The equation below represents the complete combustion of butane.

$$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$$

20 cm³ of butane are completely burned in 0.20 dm³ of oxygen. Which statement is correct?

All volumes are measured at the same temperature and pressure.

[1 mark]

A 40 cm³ of carbon dioxide are formed

0

B 0.065 dm³ of oxygen react

C 70 cm³ of oxygen remain

· ·

D 0.50 dm³ of steam are formed

0

12. June/2021/Paper_1/No.	12 .	June	/2021/	/Papei	1/1	lo.:
---------------------------	-------------	------	--------	--------	-----	------

0 1 This question is about atomic structure.

0 1 . 1 Figure 1 is a model proposed by Rutherford to show the structure of an atom.

Figure 1

State **two** features of the current model that are not shown in the Rutherford model.

[2 marks]

Feature 1 of the current model	
Feature 2 of the current model	

solvedpapers.co.uk

0 1 . 2

A sample of tin is analysed in a time of flight mass spectrometer. The sample is ionised by electron impact to form 1+ ions.

Table 1 shows data about the four peaks in this spectrum.

Table 1

m/z	Percentage abundance
112	22.41
114	11.78
117	34.97
120	To be determined

Give the symbol, including mass number, of the ion that reaches the detector first.

Calculate the relative atomic mass of tin in this sample. Give your answer to 1 decimal place.

[4 marks]

Symbol of ion

Relative atomic mass

13. June/2021/Paper_1/No.11

In a time of flight mass spectrometer, molecule X is ionised using electrospray ionisation.

What is the equation for this ionisation?

[1 mark]

 $\textbf{A} \ \ X(I) + e^- \rightarrow X^{\scriptscriptstyle +}(g) + 2 \, e^-$

0

B $X(g) + e^- \rightarrow X^+(g) + 2e^-$

 $C X(I) + H^+ \rightarrow XH^+(g)$

0

 $\textbf{D} \ \ X(g) + H^{\scriptscriptstyle +} \to XH^{\scriptscriptstyle +}(g)$

0

14. June/2021/Paper_1/No.12

What is the electron configuration of V2+ in the ground state?

[1 mark]

A 1s²2s²2p⁶3s²3p⁶3d³

B 1s²2s²2p⁶3s²3p⁶3d¹4s²

C 1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ 4s²

D 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s²

15. June/2021/Paper_1/No.21

Which atom has one more proton and two more neutrons than $^{31}_{15}\text{P}$?

[1 mark]

 $A_{16}^{33}P$

B 34₁₆P

C 33₁₆S

 $D_{16}^{34}S$

0