AQA - Atomic structure - A2 Chemistry P3

1. June/ 2019/Paper_3/No.1

0 1 Sodium thiosulfate reacts with dilute hydrochloric acid as shown.

 $Na_2S_2O_3(aq) + 2\,HCl(aq) \rightarrow 2\,NaCl(aq) + SO_2(g) + S(s) + H_2O(I)$

0 1 · 1 Give the simplest ionic equation for this reaction.

[1 mark]

0 1 . 2 The gas SO₂ is a pollutant.

State the property of SO₂ that causes pollution when it enters rivers.

Give an equation to show the reaction of SO₂ with water.

[2 marks]

Property

Equation ____

solvedpapers.co.uk

0 1 . 3	Draw a diagram to show the shape of a molecule of $H_2\mbox{O}$ Include any lone pairs of electrons.	
	State the H-O-H bond angle.	
	Explain this shape and bond angle.	[4 marks]
	Diagram	
	Bond angle	
	Explanation	

solvedpapers.co.uk

0 1 . 4	The initial rate of the reaction between sodium thiosulfate and hydrochloric acid can be monitored by measuring the time taken for a fixed amount of sulfur to be produced.
	Describe an experiment to investigate the effect of temperature on the initial rate of this reaction.
	Include
	 a brief outline of your method how you will measure the time taken for a fixed amount of sulfur to be formed how you will present your results in graphical form a sketch of the graph that you would expect.
	[6 marks]

solvedpapers.co.uk

2. June/ 2019/Paper 3/No.6

Which amount of sodium hydroxide would react exactly with 7.5 g of a diprotic acid, H_2A ($M_r = 150$)?

[1 mark]

A 50 cm³ of 0.05 mol dm⁻³ NaOH(aq)

0

B 100 cm³ of 0.50 mol dm⁻³ NaOH(aq)

0

C 100 cm³ of 1.0 mol dm⁻³ NaOH(aq)

0

D 100 cm³ of 2.0 mol dm⁻³ NaOH(aq)

3. June/ 2019/Paper_3/No.7

Lead(II) nitrate and potassium iodide react according to the equation

$$Pb(NO_3)_2(aq) \ + \ 2KI(aq) \ \rightarrow \ PbI_2(s) \ + \ 2KNO_3(aq)$$

In an experiment, 25.0 cm³ of a 0.100 mol dm⁻³ solution of each compound are mixed together.

Which amount, in mol, of lead(II) iodide is formed?

[1 mark]

A 1.25×10^{-3}

0

B 2.50×10^{-3}

0

C 1.25×10^{-2}

0

D 2.50×10^{-2}

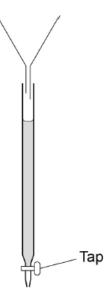
0

4. June/2021/Paper 3/No.1(1.3-1.8)

0 1. 3 Sodium ethanedioate is used to find the concentration of solutions of potassium manganate(VII) by titration. The equation for this reaction is

$$2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ C}_2 \text{O}_4^{2-} \rightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2 \text{O} + 10 \text{ CO}_2$$

A standard solution is made by dissolving 162 mg of $Na_2C_2O_4$ (M_r = 134.0) in water and making up to 250 cm³ in a volumetric flask.


25.0 cm³ of this solution and an excess of sulfuric acid are added to a conical flask. The mixture is warmed and titrated with potassium manganate(VII) solution. The titration is repeated until concordant results are obtained. The mean titre is 23.85 cm³

Calculate the concentration, in mol dm⁻³, of the potassium manganate(VII) solution. **[4 marks]**

	solveupapers.co.uk
0 1.4	Figure 1 shows the 25.0 cm ³ pipette used to measure the sodium ethanedioate solution.
	Figure 1
	Graduation mark
	On Figure 1 , draw the meniscus of the solution when the pipette is ready to transfer 25.0 cm ³ of the sodium ethanedioate solution. [1 mark]
0 1.5	Potassium manganate(VII) is oxidising and harmful. Sodium ethanedioate is toxic.
	Suggest safety precautions, other than eye protection, that should be taken when: • filling the burette with potassium manganate(VII) solution • dissolving the solid sodium ethanedioate in water.
	[2 marks]
	Filling the burette
	Dissolving the solid
0 1.6	State the colour change seen at the end point of each titration. [1 mark]

0 1. 7 Figure 2 shows the burette containing potassium manganate(VII) solution.

Figure 2

Give two practical steps needed before recording the initial burette reading.

[2 marks]

1_____

solvedpapers.co.uk

0 1 . 8	When $Na_2C_2O_4(aq)$ is added to a solution containing $[Fe(H_2O)_6]^{3+}$ ions, a reaction occurs in which all six water ligands are replaced by ethanedioate ions.
	Explain why the replacement of the water ligands by ethanedioate ions is favourable. In your answer refer to: • the enthalpy and entropy changes for the reaction • how the enthalpy and entropy changes influence the free-energy change for the
	reaction. [6 marks]
	[o marks]

solvedpapers.co.uk	

5. June/2021/Paper_3/No.9

What is the mole fraction of 1.0 g of a compound of relative molecular mass 100.0 dissolved in 30.0 g of a solvent of relative molecular mass 50.0?

[1 mark]

A 6.0×10^{-3}

0

B 1.6×10^{-2}

0

C 1.7×10^{-2}

0

D 3.0×10^{-2}

0

6. June/2021/Paper_3/No.25

Which compound needs the greatest amount of oxygen for the complete combustion of 1 mol of the compound?

[1 mark]

A ethanal

B ethanol

_		
г		
	_	
	\sim	

C ethane-1,2-diol

_		_
1		- 1
1	\circ	- 1
1	\smile	

D methanol

7. June/2021/Paper_3/No.29

Nitration of 1.70 g of methyl benzoate (M_r = 136.0) produces methyl 3-nitrobenzoate (M_r = 181.0). The percentage yield is 65.0%

What mass, in g, of methyl 3-nitrobenzoate is produced?

[1 mark]

A 0.830

B 1.10

C 1.47

D 2.26

0